4.部品の設計
乗除算モジュール
仕様
32ビットx32ビット=>64ビット
32ビット/32ビット=>32ビット商、32ビット剰余
インターフェース
入力
HOSTからの乗除区別、符号ありなし区別、スタート信号
出力
乗除算結果、実行中フラグ
CPUで指示される受けた乗除算は本モジュールで独立して実行されます。結果読み出し命令が来て、まだ実行中なら、CPU側で結果が出るまで待ちます。なお、乗除算実行中は、割り込みはDisableにして、誤動作を防いでいます。
なぜか、GCCが剰余演算で32x32演算の上位32ビットを使うコードを吐いてしまいます。なぜこのようなコードを吐くのか不明です。簡単に直せそうにないのハードで対応することにしました。
何度か、論理合成と記述を繰り返し、パラメータでLUTと演算速度のトレードオフを指定することにしました。
XILINXで合成をかけてみると、なぜかRTLシミュレーションと結果が合致しません。(AlteraではOKでした。)ところが大きなビット幅での演算を指定するとなぜかOKです。(乗算器が陽に呼び出される場合?)Xilinxでは、乗算器を搭載しているので、スライス数も変わりませんので深く検討せず、XILINXで記述を場合分けしました。(結局、記述が悪いのか、合成器が悪いのか不明です。)
なお、符号あり(負数あり)、なしの乗算アルゴリズムは以下です。
C項を2回-32回の計算に分けることで、面積とスピードのトレードオフを指定できます。とは言え、最低でもCYCLONEで1000LUT近く消費します。64ビットではLUT消費量も大きいのです。

//Jun.2.2004
//Jun.27.2004
//Jun.28.2004
//Jun.30.2004 mulfunc output bug fix
// still 16x16 sign extension
//Jul.2.2004 mul 32x32=>64bit w/ w/o sign
//Jul.2.2004 address MUL_WIDTH==1
//Jul.4.2004 input critical path : => add carry_ff;
//Jul.5.2004 :=> less fanout
//Jul.13.2004 signed mul bug fix
//Jul.15.2004 32/32 div
//Jul.16.2004 diet
//Jul.17.2004 add `ifdef less path delay for interface port
//Apr.7.2005 ADDRESS to XILINX Specific problem
// mul/div module
// a[31:0] /b[31:0] =>
// mul_div_out[15:0] <=a/b
// mul_div_out[31:16] <=a%b
// No detection of overflow
// Algorithm
// answer_reg = (answer_reg << 1);
// multout_reg<={sum,a_reg[31]};
// if (multout_reg >= b_reg) {
// answer_reg += 1;
// multout_reg -= b_reg;
// }
// a_reg <= a_reg << 1;
`include "define.h"
module mul_div(clock,sync_reset,a,b,mul_div_out,mul_div_sign,mul_div_word,mul_div_mode,state,stop_state,mul_div_enable,lohi);
`ifdef RAM4K
`ifdef XILINX
parameter MUL_WIDTH=16;//Must be 2,4,8,16 2=> less area less speed 16=> greater area but faster
parameter MUL_STATE_MSB=2;//should be 32/MUL_WIDTH-1+1;
// XILINX fails using ISE7.1 if MUL_WIDTH==1,2
// if MULWIDTH==1 synthesis is possible but post synthesis simulation fails
// if MULWIDTH==2 synthesis fails;
// MUL_WIDTH==16 shows good.
`else
parameter MUL_WIDTH=1;//Must be 2,4,8,16 2=> less area less speed 16=> greater area but faster
parameter MUL_STATE_MSB=32;//should be 32/MUL_WIDTH-1+1;
`endif
`else
`ifdef XILINX
parameter MUL_WIDTH=16;//Must be 2,4,8,16 2=> less area less speed 16=> greater area but faster
parameter MUL_STATE_MSB=2;//should be 32/MUL_WIDTH-1+1;
// XILINX fails using ISE7.1 if MUL_WIDTH==1,2
// if MULWIDTH==1 synthesis is possible but post synthesis simulation fails
// if MULWIDTH==2 synthesis fails;
// MUL_WIDTH==16 shows good.
`else
parameter MUL_WIDTH=1;//Must be 2,4,8,16 2=> less area less speed 16=> greater area but faster
parameter MUL_STATE_MSB=32;//should be 32/MUL_WIDTH-1+1;
`endif
`endif
input clock,sync_reset;
input [31:0] a,b;
input [7:0] state;
input lohi;
input mul_div_enable,mul_div_sign,mul_div_word,mul_div_mode;
output stop_state;
output [31:0] mul_div_out;
reg [31:0] a_reg;
reg [31:0] b_reg;
reg [31:0] answer_reg;
reg stop_state_reg;// For state control
reg [5:0] counter;
reg mul_div_sign_ff,mul_div_mode_ff;
reg a31_latch,b31_latch;
reg breg31;
//mult64
wire [63:0] ab62={1'b0,a_reg[31]*breg31,62'h0};//Jul.5.2004
wire [63:0] shift_a31=mul_div_sign_ff ? ~{2'b0,a_reg[30:0],31'h0}+1'b1: {2'b0,a_reg[30:0],31'h0} ;//Jul.13.2004 Jul.2.2004
wire [63:0] shift_b31=mul_div_sign_ff ? ~{2'b0,b_reg[30:0],31'h0}+1'b1: {2'b0,b_reg[30:0],31'h0};//Jul.13.2004 Jul.2.2004
wire [30:0] init_lower =breg31*shift_a31[30:0] +a_reg[31]*shift_b31[30:0]+ab62[30:0];//Jul.5.2004
wire [63:31] init_upper=breg31*shift_a31[63:31]+a_reg[31]*shift_b31[63:31]+ab62[63:31];//+carry;Jul.5.2004
wire [63:0] init_val={init_upper,init_lower};
wire [MUL_WIDTH+30 :0] mult32x4out_temp=a_reg[30:0]*b_reg[MUL_WIDTH-1:0];//Jul.5.2004
wire [MUL_WIDTH+31 :0] mult32x4out={1'b0,mult32x4out_temp};
reg [63:0] mult64_reg;
reg [31:0] multout_reg;
wire [63:0] mult64_out;
wire [63:0] mult64=a_reg* b_reg;
reg [MUL_WIDTH+31-1+1 :0] mult32x4out_reg;
wire finish_operation;
wire pre_stop;
wire [32:0] sum;
wire [31:0] answer_inc;
wire [31:0] aminus=-a;
wire [31:0] div_out,div_out_tmp;
wire mul_div_mode_w;
reg mul_state_reg;
reg div_msb_ff;
assign mul_div_mode_w=pre_stop ? mul_div_mode: mul_div_mode_ff;
`ifdef RAM4K
//less area
assign mul_div_out=!lohi ? !mul_div_mode_ff ? mult64_out[31:0] : div_out :
!mul_div_mode_ff ? mult64_out[63:32] : div_out;//Jul.16.2004
assign div_out_tmp=!lohi ? answer_reg: {div_msb_ff,multout_reg[31:1]};
assign div_out= (!lohi && (a31_latch ^ b31_latch) && mul_div_sign_ff) ||
(lohi && mul_div_sign_ff && a31_latch) ? ~div_out_tmp+1'b1 : div_out_tmp;
`else
// faster
reg [31:0] div_out_multout_latch,answer_reg_latch;//
assign mul_div_out=!lohi ? !mul_div_mode_ff ? mult64_out[31:0] : answer_reg_latch :
!mul_div_mode_ff ? mult64_out[63:32] : div_out_multout_latch;//Jul.16.2004
always @(posedge clock) begin
if ( (a31_latch ^ b31_latch) && mul_div_sign_ff)
answer_reg_latch<=~answer_reg+1'b1;
else answer_reg_latch<= answer_reg;
if ( mul_div_sign_ff && a31_latch)
div_out_multout_latch<=~{div_msb_ff,multout_reg[31:1]}+1'b1;
else div_out_multout_latch<={div_msb_ff,multout_reg[31:1]};
end
`endif
//mul64
//mul_state
always @(posedge clock) begin
breg31<=b[31];
end
always @(posedge clock) begin
mult32x4out_reg<=mult32x4out;
end
//Jul.16.2004
always @(posedge clock) begin
if (sync_reset) mul_state_reg<=0;
else if (pre_stop && mul_div_mode_w==`MUL_DIV_MUL_SEL ) mul_state_reg<=1;
else if (finish_operation) mul_state_reg<=0;
end
//mult64_reg multout_reg
always @(posedge clock) begin
if (mul_state_reg && counter==0 )begin
mult64_reg<=init_val;//Jul.13.2004 Jul.5.2004 Jul.4.2004
end
else
if (mul_state_reg) begin
{mult64_reg,multout_reg[31:31-MUL_WIDTH+1]}<={{MUL_WIDTH {1'b0}},mult64_reg+mult32x4out_reg};
multout_reg[31-MUL_WIDTH:0] <=multout_reg[31:MUL_WIDTH];
//Division
end else if (pre_stop && counter==0 ) multout_reg<=0; //First
else if (mul_div_mode_ff && stop_state_reg ) begin
if (sum[32]==1'b0) begin //if (a_reg >=b_reg)
if (finish_operation) div_msb_ff<=sum[31];
multout_reg<={sum,a_reg[31]};
end else begin
if (finish_operation) div_msb_ff<=multout_reg[31];
multout_reg[0]<=a_reg[31];
multout_reg[31:1] <=multout_reg[30:0];
end
end
end
assign mult64_out={mult64_reg[31:0],multout_reg[31:0]};
//input FFs
always @(posedge clock) begin
if (sync_reset) begin
mul_div_sign_ff<=0;
mul_div_mode_ff<=0;
end else if (pre_stop) begin
mul_div_sign_ff<=mul_div_sign;
a31_latch<=a[31];
b31_latch<=b[31];
mul_div_mode_ff<=mul_div_mode;
end
end
//state_machine
assign pre_stop=mul_div_enable ;
assign finish_operation=(mul_div_mode_ff && counter==32) || (mul_state_reg && counter==MUL_STATE_MSB) ;//Jul.2.2004
always @(posedge clock) begin
if (sync_reset) stop_state_reg <=0;
else if (pre_stop && !stop_state_reg ) stop_state_reg<=1;
else if (stop_state_reg && finish_operation) stop_state_reg<=0;
end
assign stop_state=stop_state_reg;
always @(posedge clock) begin
if (sync_reset) counter <=0;
else if (!stop_state_reg) counter <=0;
else if (stop_state_reg ) counter <=counter+1;
end
//a_reg
always @(posedge clock) begin
if(mul_div_mode_w==`MUL_DIV_MUL_SEL && pre_stop) a_reg <=a;//
else if(mul_div_mode_w !=`MUL_DIV_MUL_SEL )begin//
if (!stop_state_reg && !pre_stop) a_reg <=a_reg;//
else if (pre_stop && counter==0 ) begin //
if (mul_div_sign) begin//
if (a[31]) a_reg <=aminus;//
else a_reg <=a;
end else a_reg <=a;//
end else begin//div
a_reg <={a_reg[30:0],1'b0};// a_reg <<=1;
end
end
end
//b_reg
always @(posedge clock) begin
if (pre_stop && mul_div_mode_w==`MUL_DIV_MUL_SEL ) b_reg<={1'b0,b[30:0]};
else if ( mul_state_reg) b_reg<=b_reg[31:MUL_WIDTH];
else if( mul_div_mode_w !=`MUL_DIV_MUL_SEL) begin//
if (!stop_state_reg && !pre_stop ) b_reg <=b_reg;//
else if (pre_stop && counter==0 ) begin //
if (mul_div_sign) begin//
if ( b[31]) b_reg <=-b[31:0];//
else b_reg <=b[31:0];//
end else begin
b_reg <=b[31:0];//
end
end else begin//div
b_reg <=b_reg;//;
end
end
end
//answer_reg
always @(posedge clock) begin
if (mul_div_mode_w !=`MUL_DIV_MUL_SEL) begin//
if (!stop_state_reg && !pre_stop) answer_reg <=answer_reg;//
else if (pre_stop && counter==0 ) answer_reg<=0; //
else begin//div
if ( !sum[32] ) begin//
if (finish_operation) answer_reg <=answer_inc;
else answer_reg <={answer_inc[30:0],1'b0}; //Jun.7.2004 a_reg -= b_reg
end else begin
if (finish_operation ) begin
answer_reg <=answer_reg;
end else answer_reg <={answer_reg[30:0],1'b0}; // answer_reg <<=1;
end
end
end
end
assign sum={1'b0,multout_reg}+~{1'b0,b_reg}+1'b1;//
assign answer_inc=answer_reg+1'b1;//Jun.7.2004
endmodule
|
ALU
32ビットNATIVE ALUです。32ビット演算しかしないので、H8に比べてあっけないくらいに簡単に記述できます。
`include "define.h"
//Feb.25.2005 Verilog2001 Style
//Jan.20.2005 implict event list
//Jun.14.2004 Initial Version
//Jul.4.2004 sensibity list bug fix
//Jul.5.2004 less area version
module alu (input [31:0] a,b,
output reg [31:0] alu_out,
input [3:0] alu_func);
parameter [3:0] alu_nop =4'b0000,
alu_add =4'b0001,
alu_sub =4'b0010,
alu_less_than_unsigned =4'b0101, //Jul.5.2004
alu_less_than_signed =4'b0100, //Jul.5.2004
alu_OR =4'b0011,
alu_AND =4'b0110,
alu_XOR =4'b0111,
alu_NOR =4'b1000;
reg [32:0] sum;
always @* begin //
case (alu_func)
alu_nop : alu_out=32'h0000;
alu_add : alu_out=a+b;
alu_sub : alu_out=a+~b+1'b1;//a-b;
alu_OR : alu_out=a | b;
alu_AND : alu_out=a & b;
alu_XOR : alu_out=a ^ b;
alu_NOR : alu_out=~(a | b);
alu_less_than_unsigned : alu_out=a < b;//Jun.29.2004
alu_less_than_signed: begin
sum={a[31],a}+~{b[31],b}+1'b1;//a-b $signed(a) > $signed(b);
alu_out={31'h0000_0000,sum[32]};
end
default : alu_out=32'h0000_0000;
endcase
end
endmodule
|
シフタ
32ビットのバレルシフタです。LUTの消費量は大きいです。
//Jul.5.2004 redushift_oute shift_outritishift_outal path shift_outell
//Apr.5.2005 always @(*)
//Apr.8.2005 rewritten using verilog2001 shift_outoding style
`include "define.h"
module
shifter(input [31:0] a,
output reg [31:0] shift_out,
input [1:0] shift_func,
input [4:0] shift_amount);
localparam [1:0] shift_left=`SHIFT_LEFT,
shift_right_unsigned=`SHIFT_RIGHT_UNSIGNED,
shift_right_signed=`SHIFT_RIGHT_SIGNED;
always @ (*) begin //
if (!shift_func[1] ) begin
case (shift_amount[4:0] )
5'b00000: shift_out=a;
5'b00001: shift_out={a[30:0],1'b0};
5'b00010: shift_out={a[29:0],2'b00};
5'b00011: shift_out={a[28:0],3'b000};
5'b00100: shift_out={a[27:0],4'b0000};
5'b00101: shift_out={a[26:0],5'b0_0000};
5'b00110: shift_out={a[25:0],6'b00_0000};
5'b00111: shift_out={a[24:0],7'b000_0000};
5'b01000: shift_out={a[23:0],8'b0000_0000};
5'b01001: shift_out={a[22:0],9'b0_0000_0000};
5'b01010: shift_out={a[21:0],10'b00_0000_0000};
5'b01011: shift_out={a[20:0],11'b000_0000_0000};
5'b01100: shift_out={a[19:0],12'b0000_0000_0000};
5'b01101: shift_out={a[18:0],13'b0_0000_0000_0000};
5'b01110: shift_out={a[17:0],14'b00_0000_0000_0000};
5'b01111: shift_out={a[16:0],15'b000_0000_0000_0000};
5'b10000: shift_out={a[15:0],16'b0000_0000_0000_0000};
5'b10001: shift_out={a[14:0],16'b0000_0000_0000_0000,1'b0};
5'b10010: shift_out={a[13:0],16'b0000_0000_0000_0000,2'b00};
5'b10011: shift_out={a[12:0],16'b0000_0000_0000_0000,3'b000};
5'b10100: shift_out={a[11:0],16'b0000_0000_0000_0000,4'b0000};
5'b10101: shift_out={a[10:0],16'b0000_0000_0000_0000,5'b0_0000};
5'b10110: shift_out={a[9:0],16'b0000_0000_0000_0000,6'b00_0000};
5'b10111: shift_out={a[8:0],16'b0000_0000_0000_0000,7'b000_0000};
5'b11000: shift_out={a[7:0],16'b0000_0000_0000_0000,8'b0000_0000};
5'b11001: shift_out={a[6:0],16'b0000_0000_0000_0000,9'b0_0000_0000};
5'b11010: shift_out={a[5:0],16'b0000_0000_0000_0000,10'b00_0000_0000};
5'b11011: shift_out={a[4:0],16'b0000_0000_0000_0000,11'b000_0000_0000};
5'b11100: shift_out={a[3:0],16'b0000_0000_0000_0000,12'b0000_0000_0000};
5'b11101: shift_out={a[2:0],16'b0000_0000_0000_0000,13'b0_0000_0000_0000};
5'b11110: shift_out={a[1:0],16'b0000_0000_0000_0000,14'b00_0000_0000_0000};
5'b11111: shift_out={a[0],16'b0000_0000_0000_0000,15'b000_0000_0000_0000};
endcase
end else if (shift_func==`SHIFT_RIGHT_UNSIGNED) begin
case (shift_amount)
5'b00000: shift_out=a;
5'b00001: shift_out={1'b0,a[31:1]};
5'b00010: shift_out={2'b00,a[31:2]};
5'b00011: shift_out={3'b000,a[31:3]};
5'b00100: shift_out={4'b0000,a[31:4]};
5'b00101: shift_out={5'b0_0000,a[31:5]};
5'b00110: shift_out={6'b00_0000,a[31:6]};
5'b00111: shift_out={7'b000_0000,a[31:7]};
5'b01000: shift_out={8'b0000_0000,a[31:8]};
5'b01001: shift_out={9'b0_0000_0000,a[31:9]};
5'b01010: shift_out={10'b00_0000_0000,a[31:10]};
5'b01011: shift_out={11'b000_0000_0000,a[31:11]};
5'b01100: shift_out={12'b0000_0000_0000,a[31:12]};
5'b01101: shift_out={13'b0_0000_0000_0000,a[31:13]};
5'b01110: shift_out={14'b00_0000_0000_0000,a[31:14]};
5'b01111: shift_out={15'b000_0000_0000_0000,a[31:15]};
5'b10000: shift_out={16'b0000_0000_0000_0000,a[31:16]};
5'b10001: shift_out={16'b0000_0000_0000_0000,1'b0,a[31:17]};
5'b10010: shift_out={16'b0000_0000_0000_0000,2'b00,a[31:18]};
5'b10011: shift_out={16'b0000_0000_0000_0000,3'b000,a[31:19]};
5'b10100: shift_out={16'b0000_0000_0000_0000,4'b0000,a[31:20]};
5'b10101: shift_out={16'b0000_0000_0000_0000,5'b0_0000,a[31:21]};
5'b10110: shift_out={16'b0000_0000_0000_0000,6'b00_0000,a[31:22]};
5'b10111: shift_out={16'b0000_0000_0000_0000,7'b000_0000,a[31:23]};
5'b11000: shift_out={16'b0000_0000_0000_0000,8'b0000_0000,a[31:24]};
5'b11001: shift_out={16'b0000_0000_0000_0000,9'b0_0000_0000,a[31:25]};
5'b11010: shift_out={16'b0000_0000_0000_0000,10'b00_0000_0000,a[31:26]};
5'b11011: shift_out={16'b0000_0000_0000_0000,11'b000_0000_0000,a[31:27]};
5'b11100: shift_out={16'b0000_0000_0000_0000,12'b0000_0000_0000,a[31:28]};
5'b11101: shift_out={16'b0000_0000_0000_0000,13'b0_0000_0000_0000,a[31:29]};
5'b11110: shift_out={16'b0000_0000_0000_0000,14'b00_0000_0000_0000,a[31:30]};
5'b11111: shift_out={16'b0000_0000_0000_0000,15'b000_0000_0000_0000,a[31:31]};
endcase
end else begin// SHIFT_RIGHT_SIGNED
case (shift_amount)
5'b00000: shift_out=a;
5'b00001: shift_out={a[31],a[31:1]};
5'b00010: shift_out={{2{a[31]}},a[31:2]};
5'b00011: shift_out={{3{a[31]}},a[31:3]};
5'b00100: shift_out={{4{a[31]}},a[31:4]};
5'b00101: shift_out={{5{a[31]}},a[31:5]};
5'b00110: shift_out={{6{a[31]}},a[31:6]};
5'b00111: shift_out={{7{a[31]}},a[31:7]};
5'b01000: shift_out={{8{a[31]}},a[31:8]};
5'b01001: shift_out={{9{a[31]}},a[31:9]};
5'b01010: shift_out={{10{a[31]}},a[31:10]};
5'b01011: shift_out={{11{a[31]}},a[31:11]};
5'b01100: shift_out={{12{a[31]}},a[31:12]};
5'b01101: shift_out={{13{a[31]}},a[31:13]};
5'b01110: shift_out={{14{a[31]}},a[31:14]};
5'b01111: shift_out={{15{a[31]}},a[31:15]};
5'b10000: shift_out={{16{a[31]}},a[31:16]};
5'b10001: shift_out={{17{a[31]}},a[31:17]};
5'b10010: shift_out={{18{a[31]}},a[31:18]};
5'b10011: shift_out={{19{a[31]}},a[31:19]};
5'b10100: shift_out={{20{a[31]}},a[31:20]};
5'b10101: shift_out={{21{a[31]}},a[31:21]};
5'b10110: shift_out={{22{a[31]}},a[31:22]};
5'b10111: shift_out={{23{a[31]}},a[31:23]};
5'b11000: shift_out={{24{a[31]}},a[31:24]};
5'b11001: shift_out={{25{a[31]}},a[31:25]};
5'b11010: shift_out={{26{a[31]}},a[31:26]};
5'b11011: shift_out={{27{a[31]}},a[31:27]};
5'b11100: shift_out={{28{a[31]}},a[31:28]};
5'b11101: shift_out={{29{a[31]}},a[31:29]};
5'b11110: shift_out={{30{a[31]}},a[31:30]};
5'b11111: shift_out={{31{a[31]}},a[31:31]};
endcase
end
end
endmodule
|
PCモジュール
プログラムカウンタを作るモジュールです。パイプライン制御のため、やや複雑です。
//Jun.30.2004 NOP_DISABLE BUG FIX
`include "define.h"
module pc_module(clock,sync_reset,pc_commandD1,PCC,imm,ea_reg_source,takenD2,
takenD3 ,branchQQ,jumpQ,NOP_Signal,control_state,IMMD1, PCCDD);
input clock;
input sync_reset;
input [31:0] ea_reg_source;
input [2:0] pc_commandD1;
input takenD2;
input [25:0] imm;
input [25:0] IMMD1;
`ifdef RAM4K
output [11:0] PCC;
`else
output [25:0] PCC;
`endif
input takenD3;
input branchQQ,jumpQ;
input NOP_Signal;
input [7:0] control_state;
reg [2:0] pc_commandD2,pc_commandD3;
`ifdef RAM4K
reg [11:0] PC;
reg [11:0] pcimm1D1,pcimm2D1;
reg [15:0] immD1;//
reg [11:0] pcimm1D2,pcimm2D2,pcimm2D3;
reg [11:0] save_pc;
wire [11:0] PCC;
output [11:0] PCCDD;
reg [11:0] PCCD,PCCDD;
`else
reg [25:0] PC;
reg [25:0] pcimm1D1,pcimm2D1;
reg [15:0] immD1;//
reg [25:0] pcimm1D2,pcimm2D2,pcimm2D3;
reg [25:0] save_pc;
wire [25:0] PCC;
output [25:0] PCCDD;
reg [25:0] PCCD,PCCDD;
`endif
reg takenD4;
reg branchQQQtakenD4;
//combination
always@(posedge clock) PCCD<=PCC;
always@(posedge clock) PCCDD<=PCCD;
always @(posedge clock) begin
pc_commandD2 <=pc_commandD1;
end
//
always @(posedge clock) begin
if (NOP_Signal) pc_commandD3<=3'b000;//Jun.30.2004
else pc_commandD3 <=pc_commandD2;
end
always @(IMMD1 ) begin
pcimm1D1={IMMD1,2'b00};//Jul.7.2004 {imm[23:0],2'b00};//+{PC[25:2],2'b00};
end
`ifdef RAM4K
always @(posedge clock) begin
pcimm2D1<={PC[11:2],2'b00};
end
`else
always @(posedge clock) begin
pcimm2D1<={PC[25:2],2'b00};
end
`endif
always @(posedge clock) begin
pcimm1D2<=pcimm1D1;
end
always @(posedge clock) begin
pcimm2D2<={{8 {immD1[15]}},immD1[15:0],2'b00}+pcimm2D1;//Jul.14.2004
end
always @(posedge clock) begin
pcimm2D3<=pcimm2D2;
end
always @(posedge clock) begin
immD1<=imm[15:0];//Jul.14.2004
end
always @(posedge clock) begin
if (control_state==8'b00_000_010) save_pc<=PCCDD;
end
always @(posedge clock) begin
if (sync_reset) PC<=26'h0_00_0000_0000;
else if (branchQQQtakenD4) PC<=pcimm2D3+4;//NOP
else if (jumpQ && !NOP_Signal) PC<=pcimm1D1+4;
else if (pc_commandD3==`PC_REG) PC<=ea_reg_source[25:0]+4;
else if (control_state[2:0]==3'b110) PC<=save_pc+4;//mul/div
else case(pc_commandD1)
`PC_INC: PC<=PC+4;
default: PC<=PC+4;
endcase
end
always @(posedge clock) begin
if (sync_reset) takenD4<=1'b0;
else takenD4<=takenD3;
end
always @(posedge clock) begin
if (sync_reset) branchQQQtakenD4<=1'b0;
else branchQQQtakenD4<=branchQQ && takenD3;
end
assign PCC= branchQQQtakenD4 ? pcimm2D3 :
jumpQ && !NOP_Signal ? pcimm1D1 :
pc_commandD3==`PC_REG ? ea_reg_source[25:0] :
control_state[2:0] ==3'b110 ? save_pc:PC;//Jun.27.2004
endmodule
|
デコーダ
マイクロプログラム的な書き方はせず、純ハード的な書き方をしてみました。RISCなので、デコーダ自体は、圧倒的に簡単です。(LUT消費量でH8プロジェクト1/6位)。パイプライン制御のロジックがやや複雑です。なお、パイプラインでは、インターロックは行っていません。必要なときは、NOP_SIGNALを作り、レジスタライト、メモリライト、PC変更を禁止しているだけです。タイミングを作るためのDFFが散在しています。
//Jun.28.2004
//Jun.30.2004 jump bug fix
//Jul.11.2004 target special zero
//Jan.20.2005 apply @*
`include "define.h"
//`define ALTERA
module decoder(clock,sync_reset,MWriteD1,RegWriteD2,A_Right_SELD1,RF_inputD2,
RF_input_addr,M_signD1,M_signD2,M_access_modeD1,M_access_modeD2,
ALU_FuncD2,Shift_FuncD2,source_addrD1,target_addrD1,IMMD2,
source_addrD2,target_addrD2,Shift_amountD2,PC_commandD1,IMMD1,IRD1,takenD3,takenD2,beqQ,bneQ,blezQ,bgtzQ,
DAddress,PC,memory_indata,MOUT,IMM,branchQQ,jumpQ,int_req,clear_int,int_address,
A_Left_SELD1,RRegSelD1,MWriteD2,NOP_Signal,mul_alu_selD2,mul_div_funcD2,
pause_out,control_state,Shift_Amount_selD2,uread_port,int_stateD1,bgezQ,bltzQ,write_busy);
input clock,sync_reset;
input takenD3,takenD2;
output MWriteD1,RegWriteD2;
output [1:0] A_Right_SELD1;
output [1:0] RF_inputD2;
output M_signD1,M_signD2;
output [1:0] M_access_modeD1,M_access_modeD2;
output [3:0] ALU_FuncD2;
output [1:0] Shift_FuncD2;
output [25:0] IMMD2,IMMD1;
output [4:0] source_addrD2,target_addrD2;
output [4:0] source_addrD1,target_addrD1,Shift_amountD2;
output [4:0] RF_input_addr;
output [2:0] PC_commandD1;
output [31:0] IRD1;
output beqQ,bneQ,blezQ,bgtzQ;
output bgezQ,bltzQ;
input [7:0] uread_port;
output int_stateD1;
input write_busy;//Apr.2.2005
`ifdef RAM4K
input [11:0] DAddress,PC;
input [11:0] int_address;
`else
input [25:0] DAddress,PC;
input [25:0] int_address;
`endif
input [31:0] memory_indata;
output [31:0] MOUT;
output [25:0] IMM;
output branchQQ,jumpQ;
input int_req;
output clear_int;
output A_Left_SELD1;
output [1:0] RRegSelD1;
output MWriteD2;
output NOP_Signal;
output [1:0] mul_alu_selD2;
output [3:0] mul_div_funcD2;
input pause_out;
output [7:0] control_state;
output Shift_Amount_selD2;
//For Debug Use
localparam [4:0] zero_=0,
at_=1,
v0_=2,
v1_=3,
a0_=4,
a1_=5,
a2_=6,
a3_=7,
t0_=8, t1_=9,t2_=10,t3_=11,t4_=12,t5_=13,t6_=14,t7_=15,
s0_=16,s1_=17,s2_=18,s3_=19,s4_=20,s5_=21,s6_=22,s7_=23,t8_=24,t9_=25,
k0_=26,k1_=27,gp_=28,sp_=29,s8_=30,ra_=31;
//regsiters
reg [31:0] IRD1;
reg [31:0] IRD2;
reg [1:0] RF_input_addr_selD1;
reg [4:0] RF_input_addr;
reg [1:0] Shift_FuncD1,Shift_FuncD2;
reg [3:0] ALU_FuncD2;
reg [1:0] A_Right_SELD1;
reg [1:0] RF_inputD2,RF_inputD1;
reg [1:0] M_access_modeD1,M_access_modeD2;
reg M_signD1,M_signD2;
reg MWriteD1,RegWriteD2,RegWriteD1,MWriteD2;
reg [2:0] PC_commandD1;
reg beqQ,bneQ,blezQ,bgtzQ;
reg bltzQ,bgezQ;//Jul.11.2004
reg branchQ,branchQQ,jumpQ;
reg [7:0] control_state;
reg sync_resetD1;
reg [31:0] memory_indataD2;
reg A_Left_SELD1;
reg [1:0] RRegSelD1;
reg takenD4,takenD5;
reg nop_bit;
reg [1:0] mul_alu_selD2;
reg mul_div_funcD1;
reg div_mode_ff;
reg [3:0] mul_div_funcD2;
reg excuting_flag;
reg excuting_flagD,excuting_flagDD;
reg Shift_Amount_selD2;
reg int_seqD1;
//wires
wire [31:0] IR;
wire [5:0] opecode=IR[31:26];
wire [5:0] opecodeD1=IRD1[31:26];
wire [5:0] opefuncD1=IRD1[5:0];
wire [5:0] opefunc=IR[5:0];
wire [4:0] destination_addrD1;//Apr.8.2005
wire NOP_Signal;
wire finish_operation;
assign int_stateD1=control_state==5;
assign IMMD2=IRD2[25:0];
assign IMMD1=IRD1[25:0];
assign source_addrD2=IRD2[25:21];
assign target_addrD2=IRD2[20:16];
assign source_addrD1=IRD1[25:21];
assign target_addrD1=IRD1[20:16];
assign destination_addrD1=IRD1[15:11];
assign Shift_amountD2=IRD2[10:6];
assign IMM=IR[25:0];
`ifdef Veritak //Disassenblar
reg [30*8:1] inst;
wire [5:0] op=IR[31:26];
wire [25:0] bra=PC+{{10{IR[15]}},IR[15:0]}*4;//+4;
wire [4:0] rs=IR[25:21];
wire [4:0] rt=IR[20:16];
wire [4:0] rd=IR[15:11];
wire [4:0] sh=IR[10:6];
reg [5*8:1] reg_name="abcd";
reg [30*8:1] instD1,instD2;
function [4*8:1] get_reg_name;
input [4:0] field;
begin
case (field)
0: get_reg_name="$z0";
1: get_reg_name="$at";
2: get_reg_name="$v0";
3: get_reg_name="$v1";
4: get_reg_name="$a0";
5: get_reg_name="$a1";
6: get_reg_name="$a2";
7: get_reg_name="$a3";
8,9,10,11,12,13,14,15:
$sprintf(get_reg_name,"$t%1d",field-8);
16,17,18,19,20,21,22,23,24,25: $sprintf(get_reg_name,"$s%1d",field-16);
26:get_reg_name="$k0";
27:get_reg_name="$k1";
28:get_reg_name="$gp";
29:get_reg_name="$sp";
30:get_reg_name="$s8";
31:get_reg_name="$ra";
endcase
end
endfunction
always @(posedge clock) begin
instD1<=inst;
instD2<=instD1;
end
always @*begin:sprintf //Jan.20.2005 @ (IR,op,bra,rs,rt,rd,sh) begin :sprintf
reg [4*8:1] rdn;//Mar.15.2005 =get_reg_name(rd);//
reg [4*8:1] rsn;//Mar.15.2005=get_reg_name(rs);
reg [4*8:1] rtn;//Mar.15.2005 =get_reg_name(rt);
rdn=get_reg_name(rd);
rsn=get_reg_name(rs);
rtn=get_reg_name(rt);
case (op)
0:
case (IR[5:0])
0: if (rd==0 && rt==0 && rs==0 ) $sprintf(inst,"nop");
else $sprintf(inst,"sll %s,%s,%2d\n",rdn,rtn,sh);
2:
$sprintf(inst," srl %s,%s,%2d\n",rdn,rtn,sh);
3:
$sprintf(inst," sra %s,%s,%2d\n",rdn,rtn,sh);
4:
$sprintf(inst," sllv %s,%s,%s\n",rdn,rtn,rsn);
6:
$sprintf(inst," srlv %s,%s,%s\n",rdn,rtn,rsn);
7:
$sprintf(inst," srav %s,%s,%s\n",rdn,rtn,rsn);
8:
$sprintf(inst," jr %s\n",rsn);
9:
$sprintf(inst," jalr %s\n",rsn);
12:
$sprintf(inst," syscall\n");
13:
$sprintf(inst," break");
16:
$sprintf(inst," mfhi %s\n",rdn);
17:
$sprintf(inst," mthi %s\n",rsn);
18:
$sprintf(inst," mflo %s\n",rdn);
19:
$sprintf(inst," mtlo %s\n",rsn);
24:
$sprintf(inst," mult %s,%s\n",rsn,rtn);
25:
$sprintf(inst," multu %s,%s\n",rsn,rtn);
26:
$sprintf(inst," div %s,%s\n",rsn,rtn);
27:
$sprintf(inst," divu %s,%s\n",rsn,rtn);
32:
$sprintf(inst," add %s,%s,%s",rdn,rsn,rtn);
33:
if(rt==0)
$sprintf(inst," move %s,%s\n",rdn,rsn);
else
$sprintf(inst," addu %s,%s,%s\n",rdn,rsn,rtn);
34:
$sprintf(inst," sub %s,%s,%s\n",rdn,rsn,rtn);
35:
$sprintf(inst," subu %s,%s,%s\n",rdn,rsn,rtn);
36:
$sprintf(inst," and %s,%s,%s\n",rdn,rsn,rtn);
37:
if(rt==0)
$sprintf(inst," move %s,%s\n",rdn,rsn);
else
$sprintf(inst," or %s,%s,%s\n",rdn,rsn,rtn);
38:
$sprintf(inst," xor %s,%s,%s\n",rdn,rsn,rtn);
39:
$sprintf(inst," nor %s,%s,%s\n",rdn,rsn,rtn);
42:
$sprintf(inst," slt %s,%s,%s\n",rdn,rsn,rtn);
43:
$sprintf(inst," sltu %s,%s,%s\n",rdn,rsn,rtn);
default:
$sprintf(inst,"Unknown Func. %08h\n",IR);
endcase
1:
case (IR[20:16])
0:
$sprintf(inst," bltz %s,$%08h\n",rsn,bra);
1:
$sprintf(inst," bgez %s,$%08h\n",rsn,bra);
16:
$sprintf(inst," bltzal %s,$%08h\n",rsn,bra);
17:
$sprintf(inst," bgezal %s,$%08h\n",rsn,bra);
default:
$sprintf(inst,"Unknown1 %08h\n",IR);
endcase
2:
$sprintf(inst," j $%08h\n",((IR*4)&32'h0ffffffc)+(PC&32'hf0000000));
3:
$sprintf(inst," jal $%08h\n",((IR*4)&32'h0ffffffc)+(PC&32'hf0000000));
4:
if(rs==0 && rt==0)
$sprintf(inst," bra $%08h\n",bra);
else
$sprintf(inst," beq %s,%s,$%08h\n",rsn,rtn,bra);
5:
$sprintf(inst," bne %s,%s,$%08h\n",rsn,rtn,bra);
6:
$sprintf(inst," blez %s,$%08h\n",rsn,bra);
7:
$sprintf(inst," bgtz %s,$%08h\n",rsn,bra);
8:
$sprintf(inst," addi %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
9:
if(rs==0)
$sprintf(inst," li %s,#$%08h\n",rtn,IR[15:0]);
else
$sprintf(inst," addiu %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
10:
$sprintf(inst," slti %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
11:
$sprintf(inst," sltiu %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
12:
$sprintf(inst," andi %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
13:
if(rs==0)
$sprintf(inst," li %s,#$%08h\n",rtn,IR[15:0]);
else
$sprintf(inst," ori %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
14:
$sprintf(inst," xori %s,%s,#$%04h\n",rtn,rsn,IR[15:0]);
15://load upper immediate
$sprintf(inst," lui %s,#$%04h",rtn,IR[15:0]);
16, 17, 18, 19: begin
if(rs>=16)
$sprintf(inst," cop%d $%08h\n",op&3,IR[25:0]);
else
case(rsn)
0:
$sprintf(inst," mfc%d %s,%s\n",op&3,rtn,rdn);
2:
$sprintf(inst," cfc%d %s,%s\n",op&3,rtn,rdn);
4:
$sprintf(inst," mtc%d %s,%s\n",op&3,rtn,rdn);
6:
$sprintf(inst," ctc%d %s,%s\n",op&3,rtn,rdn);
8, 12:
if(rt&1)
$sprintf(inst," bc%dt %d,%08h\n",op&3,rs*32+rt,bra);
else
$sprintf(inst," bc%df %d,%08h\n",op&3,rs*32+rt,bra);
default:
$sprintf(inst,"Unknown16 %08h\n",IR);
endcase
end
32:
$sprintf(inst," lb %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
33:
$sprintf(inst," lh %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
34:
$sprintf(inst," lwl %s,$%04h(%s)\n",IR[15:0],rsn);
35:
$sprintf(inst," lw %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
36:
$sprintf(inst," lbu %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
37:
$sprintf(inst," lhu %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
38:
$sprintf(inst," lwr %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
40:
$sprintf(inst," sb %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
41:
$sprintf(inst," sh %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
42:
$sprintf(inst," swl %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
43:
$sprintf(inst," sw %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
46:
$sprintf(inst," swr %s,$%04h(%s)\n",rtn,IR[15:0],rsn);
48, 49, 50, 51:
$sprintf(inst," lwc%d %s,$%04h(%s)\n",op&3,rtn,IR[15:0],rsn);
56, 57, 58, 59:
$sprintf(inst," swc%d %s,$%04h(%s)\n",op&3,rtn,IR[15:0],rsn);
default:
$sprintf(inst,"UnknownOp %08h\n",IR);
endcase
end
`endif
//
always @ (posedge clock) sync_resetD1 <=sync_reset;
//IRD1
always @ (posedge clock) begin
if (sync_resetD1) IRD1 <=32'h00;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) IRD1<=int_address>>2;
else if (opecode==6'b000_001) IRD1<={IR[31:21],5'b00000,IR[15:0]};//Jul.11.2004 target がSpecial zero
else IRD1 <=IR;
end
//IRD2
always @ (posedge clock) begin
IRD2 <=IRD1;
end
//RF_input_addr [4:0]
always @ (posedge clock) begin
case (RF_input_addr_selD1)
`RF_Ert_sel: RF_input_addr <=target_addrD1;
`RF_Erd_sel: RF_input_addr <=destination_addrD1;
`RF_R15_SEL: RF_input_addr <=`Last_Reg;
`RF_INTR_SEL:RF_input_addr <=`Intr_Reg;
default : RF_input_addr <=target_addrD1;
endcase
end
//int_seqD1
always @(posedge clock) begin
if (sync_reset) int_seqD1<=0;
else int_seqD1<=control_state[5:0]==6'b00_0000 && int_req;
end
// [1:0] Shift_FuncD1,Shift_FuncD2;
always @ (posedge clock) begin
Shift_FuncD2<=Shift_FuncD1;
end
// [3:0] ALU_FuncD1,ALU_FuncD2;
always @ (posedge clock) begin
M_access_modeD2<=M_access_modeD1;
end
//M_signD1,M_signD2;
always @ (posedge clock) begin
M_signD2<=M_signD1;
end
//takenD4
always @ (posedge clock) begin
if (sync_resetD1) takenD4<=1'b0;
else if (NOP_Signal) takenD4<=1'b0;//TRY
else takenD4<=takenD3;
end
//takenD5
always @ (posedge clock) begin
if (sync_resetD1) takenD5<=1'b0;
else takenD5<=takenD4;
end
//RegWriteD2,RegWriteD1;
always @ (posedge clock) begin
if (sync_resetD1) begin
RegWriteD2<=1'b0;
end else if (takenD4 ||takenD5 || NOP_Signal ) RegWriteD2<=1'b0;//NOP
else RegWriteD2<=RegWriteD1;
end
//Combination logics
//RegWrite;
always @ (posedge clock) begin
if (sync_resetD1) RegWriteD1<=1'b0;
else if (control_state[5:0]==6'b00_0000 && int_req) RegWriteD1<=1'b1;
else case (opecode)
`loadbyte_signed : RegWriteD1<=1'b1;
`loadbyte_unsigned : RegWriteD1<=1'b1;
`loadword_signed : RegWriteD1<=1'b1;
`loadword_unsigned : RegWriteD1<=1'b1;
`loadlong : RegWriteD1<=1'b1;
`jump_and_link_im: RegWriteD1<=1'b1;
`andi : RegWriteD1<=1'b1;
`addi : RegWriteD1<=1'b1 ;
`addiu : RegWriteD1<=1'b1;
`ori : RegWriteD1<=1'b1;
`xori : RegWriteD1<=1'b1;
`lui : RegWriteD1<=1'b1;
`comp_im_signed : RegWriteD1<=1'b1;
`comp_im_unsigned : RegWriteD1<=1'b1;
6'b00_0000:
case (opefunc)
`divs: RegWriteD1<=1'b0;
`divu: RegWriteD1<=1'b0;
`muls: RegWriteD1<=1'b0;
`mulu: RegWriteD1<=1'b0;
default: RegWriteD1<=1'b1;
endcase
default: RegWriteD1<=1'b0;
endcase
end
//
always @ (posedge clock) begin
if (sync_resetD1) mul_div_funcD1<=1'b0;
else if (control_state[5:0]==6'b00_0000 && int_req) mul_div_funcD1<=1'b0;
else case (opecode)
6'b00_0000:
case (opefunc)
`divs: begin
mul_div_funcD1<=1'b1;
div_mode_ff<=1'b1;
end
`divu: begin
mul_div_funcD1<=1'b1;
div_mode_ff<=1'b1;
end
`muls: begin
mul_div_funcD1<=1'b1;
div_mode_ff<=1'b0;
end
`mulu: begin
mul_div_funcD1<=1'b1;
div_mode_ff<=1'b0;
end
default: mul_div_funcD1<=1'b0;
endcase
default: mul_div_funcD1<=1'b0;
endcase
end
//mu_div_func
//mul_alu_selD2/excuting_flag
always @ (posedge clock) begin
if (sync_resetD1) begin
mul_div_funcD2 <=`mult_nothing;
mul_alu_selD2<=2'b00;
end else if ( mul_div_funcD2 [3] ) mul_div_funcD2[3]<=1'b0;////
else if( !NOP_Signal) //
case (opecodeD1)
6'b00_0000:
case (opefuncD1)
`divs: begin
mul_div_funcD2<=`mult_signed_divide;
end
`divu: begin
mul_div_funcD2<=`mult_divide;
end
`muls: begin
mul_div_funcD2<=`mult_signed_mult;
end
`mulu: begin
mul_div_funcD2<=`mult_mult;
end
`mfhi : begin
if (!pause_out)mul_div_funcD2<=`mult_read_hi;
mul_alu_selD2<=`MUL_hi_SEL;
end
`mflo : begin
if(!pause_out) mul_div_funcD2<=`mult_read_lo;
mul_alu_selD2<=`MUL_lo_SEL;
end
default: begin
mul_div_funcD2 <=`mult_read_lo;
mul_alu_selD2<=2'b00;
end
endcase
default: mul_alu_selD2<=2'b00;
endcase
end
always @ (posedge clock) begin
if (sync_resetD1) excuting_flagD<=1'b0;
else excuting_flagD<=excuting_flag;
end
always @ (posedge clock) begin
if (sync_resetD1) excuting_flagDD<=1'b0;
else excuting_flagDD<=excuting_flagD;
end
assign finish_operation=excuting_flag && !pause_out;
//MWrite
always @ (posedge clock) begin
if (sync_resetD1) MWriteD1<=1'b0;
else case (opecode)
`storebyte: MWriteD1<=1'b1;
`storeword: MWriteD1<=1'b1;
`storelong: MWriteD1<=1'b1;
default: MWriteD1<=1'b0;
endcase
end
always @ (posedge clock) begin
if (sync_resetD1) MWriteD2<=1'b0;
else if ( NOP_Signal ) MWriteD2<=1'b0;
else MWriteD2<=MWriteD1;//taken NOP
end
//M_sign
always @ (posedge clock) begin
if (sync_resetD1) M_signD1<=`M_unsigned;
else case (opecode)
`loadbyte_signed : M_signD1<=`M_signed;
`loadbyte_unsigned : M_signD1<=`M_unsigned;
`loadword_signed : M_signD1<=`M_signed;
`loadword_unsigned : M_signD1<=`M_unsigned;
`loadlong : M_signD1<=`M_unsigned;
`storebyte: M_signD1<=`M_unsigned;
`storeword: M_signD1<=`M_unsigned;
`storelong: M_signD1<=`M_unsigned;
default: M_signD1<=`M_unsigned;
endcase
end
// [1:0] M_access_mode
always @ (posedge clock) begin
if (sync_resetD1) M_access_modeD1<=`LONG_ACCESS;
else case (opecode)
`loadbyte_signed : M_access_modeD1<=`BYTE_ACCESS;
`loadbyte_unsigned : M_access_modeD1<=`BYTE_ACCESS;
`loadword_signed : M_access_modeD1<=`WORD_ACCESS;
`loadword_unsigned : M_access_modeD1<=`WORD_ACCESS;
`loadlong : M_access_modeD1<=`LONG_ACCESS;
`storebyte: M_access_modeD1<=`BYTE_ACCESS;
`storeword: M_access_modeD1<=`WORD_ACCESS;
`storelong: M_access_modeD1<=`LONG_ACCESS;
default: M_access_modeD1<=`LONG_ACCESS;
endcase
end
// [2:0] RF_input Shift_Amount_sel
always @ (posedge clock) begin
if (sync_resetD1) begin
RF_inputD2 <=`RF_ALU_sel;
Shift_Amount_selD2<=`SHIFT_AMOUNT_IMM_SEL;
end
else if ((int_seqD1) || NOP_Signal ) RF_inputD2<=`RF_PC_SEL;//Jul.7.2004
else
case (opecodeD1)
`lui :RF_inputD2 <=`SHIFT16_SEL;
`jump_and_link_im: RF_inputD2<=`RF_PC_SEL;
6'b00_0000:
case (opefuncD1)
`jump_and_link_register : RF_inputD2<=`RF_PC_SEL;
`lsl : begin
RF_inputD2<=`RF_Shifter_sel ;
Shift_Amount_selD2<=`SHIFT_AMOUNT_IMM_SEL;
end
`sllv : begin
RF_inputD2<=`RF_Shifter_sel ;
Shift_Amount_selD2<=`SHIFT_AMOUNT_REG_SEL;
end
`asr : begin
RF_inputD2<=`RF_Shifter_sel ;
Shift_Amount_selD2<=`SHIFT_AMOUNT_IMM_SEL;
end
`srav : begin
RF_inputD2<=`RF_Shifter_sel ;
Shift_Amount_selD2<=`SHIFT_AMOUNT_REG_SEL;
end
`lsr : begin
RF_inputD2<=`RF_Shifter_sel;
Shift_Amount_selD2<=`SHIFT_AMOUNT_IMM_SEL;
end
`srlv : begin
RF_inputD2<=`RF_Shifter_sel;
Shift_Amount_selD2<=`SHIFT_AMOUNT_REG_SEL;
end
`mfhi : RF_inputD2<=`RF_PC_SEL;
`mflo : RF_inputD2<=`RF_PC_SEL;
default : begin
RF_inputD2<=`RF_ALU_sel;
Shift_Amount_selD2<=`SHIFT_AMOUNT_IMM_SEL;
end
endcase
default: begin
RF_inputD2<=`RF_ALU_sel;
Shift_Amount_selD2<=`SHIFT_AMOUNT_IMM_SEL;
end
endcase
end
//[1:0] A_Right_SEL
always @ (posedge clock) begin
casex (opecode)
`storebyte: A_Right_SELD1<=`A_RIGHT_ERT;
`storeword: A_Right_SELD1<=`A_RIGHT_ERT;
`storelong: A_Right_SELD1<=`A_RIGHT_ERT;
`andi : A_Right_SELD1<=`Imm_unsigned ;
`addi : A_Right_SELD1<=`Imm_signed ;
`addiu : A_Right_SELD1<=`Imm_signed;
`ori : A_Right_SELD1<=`Imm_unsigned;
`xori : A_Right_SELD1<=`Imm_unsigned;
`beq : A_Right_SELD1<=`A_RIGHT_ERT;
`bgtz : A_Right_SELD1<=`A_RIGHT_ERT;
`blez : A_Right_SELD1<=`A_RIGHT_ERT;
`bne : A_Right_SELD1<=`A_RIGHT_ERT;
`comp_im_signed : A_Right_SELD1<=`Imm_signed;
`comp_im_unsigned : A_Right_SELD1<=`Imm_signed;
//6'b00_0000:
6'b00_000?://Jul.11.2004 target select
case (opefunc)
default : A_Right_SELD1<=`A_RIGHT_ERT;
endcase
default: A_Right_SELD1<=`Imm_signed;
endcase
end
//Interim A_Left_SELD1RRegSelD1
always @ (posedge clock) begin
case (opecode)
default: A_Left_SELD1<=0;//always Left_latch
endcase
end
always @ (posedge clock) begin
if ((control_state[5:0]==6'b00__0000 && int_req) ) RRegSelD1<=`NREG_SEL;//Jul.13.2004
else case (opecode)
`loadbyte_signed : RRegSelD1<=`MOUT_SEL;
`loadbyte_unsigned : RRegSelD1<=`MOUT_SEL;
`loadword_signed : RRegSelD1<=`MOUT_SEL;
`loadword_unsigned : RRegSelD1<=`MOUT_SEL;
`loadlong : RRegSelD1<=`MOUT_SEL;
default: RRegSelD1<=`NREG_SEL;//Interim MULSEL
endcase
end
// [3:0] ALU_Func[1:0] ;
always @ (posedge clock) begin
case (opecodeD1)
`andi : ALU_FuncD2<=`ALU_AND;
`addi : ALU_FuncD2<=`ALU_ADD ;
`addiu : ALU_FuncD2<=`ALU_ADD;
`ori : ALU_FuncD2<=`ALU_OR;
`xori : ALU_FuncD2<=`ALU_XOR;
`comp_im_signed : ALU_FuncD2<=`ALU_LESS_THAN_SIGNED;
`comp_im_unsigned : ALU_FuncD2<=`ALU_LESS_THAN_UNSIGNED;
6'b00_0000:
case (opefuncD1)
`add : ALU_FuncD2<=`ALU_ADD ;
`addu : ALU_FuncD2<=`ALU_ADD ;
`sub : ALU_FuncD2<=`ALU_SUBTRACT;
`subu : ALU_FuncD2<=`ALU_SUBTRACT;
`and : ALU_FuncD2<=`ALU_AND;
`nor : ALU_FuncD2<=`ALU_NOR;
`or : ALU_FuncD2<=`ALU_OR;
`xor : ALU_FuncD2<=`ALU_XOR;
`comp_signed : ALU_FuncD2<=`ALU_LESS_THAN_SIGNED;
`comp_unsigned : ALU_FuncD2<=`ALU_LESS_THAN_UNSIGNED;
default : ALU_FuncD2<=`ALU_NOTHING;//Jul.6.2004 ALU_NOTHING;
endcase
default: ALU_FuncD2<=`ALU_NOTHING;//Jul.6.2004 ALU_NOTHING;
endcase
end
// [1:0] Shift_Func;
always @ (posedge clock) begin
case (opecode)
6'b00_0000:
case (opefunc)
`lsl : Shift_FuncD1<=`SHIFT_LEFT;
`sllv : Shift_FuncD1<=`SHIFT_LEFT;
`asr : Shift_FuncD1<=`SHIFT_RIGHT_SIGNED;
`srav : Shift_FuncD1<=`SHIFT_RIGHT_SIGNED;
`lsr : Shift_FuncD1<=`SHIFT_RIGHT_UNSIGNED;
`srlv : Shift_FuncD1<=`SHIFT_RIGHT_UNSIGNED;
default : Shift_FuncD1<=`SHIFT_LEFT;//Jul.5.2004 `SHIFT_NOTHING;
endcase
default: Shift_FuncD1<=`SHIFT_LEFT;//Jul.5.2004`SHIFT_NOTHING;
endcase
end
//RF_input_addr_sel
always @ (posedge clock) begin
if ((control_state[5:0]==6'b00__0000 && int_req) ) RF_input_addr_selD1<=`RF_INTR_SEL;
else
case (opecode)
`andi : RF_input_addr_selD1<=`RF_Ert_sel;
`addi : RF_input_addr_selD1<=`RF_Ert_sel;
`ori : RF_input_addr_selD1<=`RF_Ert_sel;
`xori : RF_input_addr_selD1<=`RF_Ert_sel;
`jump_and_link_im: RF_input_addr_selD1<=`RF_R15_SEL;
`lui : RF_input_addr_selD1<=`RF_Ert_sel;
`comp_im_signed : RF_input_addr_selD1<=`RF_Ert_sel;
`comp_im_unsigned: RF_input_addr_selD1<=`RF_Ert_sel;
6'b00_0000:
case (opefunc)
`jump_and_link_register: RF_input_addr_selD1<=`RF_R15_SEL;
default : RF_input_addr_selD1<=`RF_Erd_sel;
endcase
default: RF_input_addr_selD1<=`RF_Ert_sel;
endcase
end
//PC_command decoder
// always @ (posedge clock) begin
always @(opecode,control_state,int_req,opefunc,NOP_Signal,takenD3,takenD4) begin//Jul.2.2004
if (takenD3 || takenD4) PC_commandD1<=`PC_INC;//
else case (opecode)
6'b00_0000:
case (opefunc)
`jmp_register : PC_commandD1<=`PC_REG;
default: PC_commandD1<=`PC_INC;
endcase
default : PC_commandD1<=`PC_INC;
endcase
end
//unsuppurted command detector Jul.11.2004
always @(posedge clock) begin
case (opecode)
6'b000_001://Jul.11.2004 simple decode
case (IR[20:16])
`bltzal :begin
$display("unsupported command");
$stop;
end
`bgezal : begin
$display("unsupported command");
$stop;
end
`bltzall:begin
$display("unsupported command");
$stop;
end
`bltzl:begin
$display("unsupported command");
$stop;
end
`bgezall:begin
$display("unsupported command");
$stop;
end
`bgezl: begin
$display("unsupported command");
$stop;
end
endcase
endcase
end
always @ (posedge clock) begin
if ((control_state[5:0]==6'b00_0000 && int_req) ) begin
jumpQ<=1'b1;
branchQ<=1'b0;////Jun.30.2004
end else if (takenD3) begin
jumpQ<=1'b0;//inhibit jump at delayed slot2
branchQ<=1'b0;//TRY Jun.30.2004
end else
case (opecode)
`jump: begin
jumpQ<=1'b1;
branchQ<=1'b0;//Jun.30.2004
end
`jump_and_link_im: begin
jumpQ<=1'b1;
branchQ<=1'b0;//Jun.30.2004
end
`beq : begin
jumpQ<=1'b0;//Jun.30.2004
branchQ<=1'b1;
end
`bgtz : begin
jumpQ<=1'b0;//Jun.30.2004
branchQ<=1'b1;
end
`blez : begin
jumpQ<=1'b0;//Jun.30.2004
branchQ<=1'b1;
end
`bne : begin
jumpQ<=1'b0;//Jun.30.2004
branchQ<=1'b1;
end
6'b000_001://Jul.11.2004 simple decode
begin
jumpQ<=1'b0;
branchQ<=1'b1;
end
default : begin
jumpQ<=1'b0;
branchQ<=1'b0;
end
endcase
end
always @ (posedge clock) begin
if (NOP_Signal) branchQQ<=1'b0;
else branchQQ<=branchQ;
end
//For Critical Path
always @(posedge clock) begin
if (sync_resetD1) beqQ<=0;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) beqQ<=1'b0;
else if (opecode==`beq) beqQ<=1'b1;
else beqQ<=1'b0;
end
//Jul.11.2004 bltz
always @(posedge clock) begin
if (sync_resetD1) bltzQ<=0;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) bltzQ<=1'b0;
else if (opecode==6'b000_001 && IR[20:16]==`bltz) bltzQ<=1'b1;//Jul.13.2004
else bltzQ<=1'b0;
end
//Jul.11.2004 bgez
always @(posedge clock) begin
if (sync_resetD1) bgezQ<=0;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) bgezQ<=1'b0;
else if (opecode==6'b000_0001 && IR[20:16]==`bgez) bgezQ<=1'b1;//Jul.13.2004
else bgezQ<=1'b0;
end
always @(posedge clock) begin
if (sync_resetD1) bgtzQ<=0;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) bgtzQ<=1'b0;
else if (opecode==`bgtz) bgtzQ<=1'b1;
else bgtzQ<=1'b0;
end
always @(posedge clock) begin
if (sync_resetD1) blezQ<=0;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) blezQ<=1'b0;
else if (opecode==`blez) blezQ<=1'b1;
else blezQ<=1'b0;
end
always @(posedge clock) begin
if (sync_resetD1) bneQ<=0;
else if ((control_state[5:0]==6'b00_0000 && int_req) ) bneQ<=1'b0;
else if (opecode==`bne) bneQ<=1'b1;
else bneQ<=1'b0;
end
//
always @(posedge clock) begin
if (sync_resetD1) begin
excuting_flag<=1'b0;//
end else
begin
if (!pause_out && excuting_flagDD) excuting_flag<=1'b0;
else case (opecode)
6'b00_0000:
case (opefunc)
`divs: excuting_flag<=1'b1;
`divu: excuting_flag<=1'b1;
`muls: excuting_flag<=1'b1;
`mulu: excuting_flag<=1'b1;
endcase
endcase
end
end
always @(posedge clock) begin
if (sync_resetD1) begin
control_state<=6'b00_0000;
end else
begin
casex (control_state[5:0])
6'b00_0000:
begin
if(int_req) control_state<=6'b000_101;//
else
case (opecode)
`jump: control_state<=6'b100_000;
`jump_and_link_im: control_state<=6'b100_000;
`beq : control_state<=6'b110_000;
`bgtz : control_state<=6'b110_000;
`blez : control_state<=6'b110_000;
`bne : control_state<=6'b110_000;
6'b000_001: control_state<=6'b110_000;//Jul.11.2004 Special Branch
6'b00_0000:
case (opefunc)
`jump_and_link_register: control_state<=6'b101_000;
`jmp_register : control_state<=6'b101_000;
`mfhi: if (excuting_flag) control_state<=8'b00_000_010;
`mflo: if (excuting_flag) control_state<=8'b00_000_010;
default: control_state<=6'b00_0000;//for safety
endcase
endcase
end
6'b???_101: control_state<=6'b000_000;//interrupt_nop state
6'b100_000: control_state<=6'b000_000;//fixed_jump state
6'b101_000: control_state<=6'b001_100;//jump&link state
6'b001_100: control_state<=6'b000_000;//NOP2 state
6'b110_000: control_state<=6'b000_100;//delayed branch
6'b000_100: `ifdef RAM4K//Priotiry Area
if (takenD3) control_state<=6'b001_100;//NOP1 state
else case (opecode)
`jump: control_state<=6'b100_000;
`jump_and_link_im: control_state<=6'b100_000;
`beq : control_state<=6'b110_000;
`bgtz : control_state<=6'b110_000;
`blez : control_state<=6'b110_000;
`bne : control_state<=6'b110_000;
6'b000_001: control_state<=6'b110_000;//Jul.11.2004 Special Branch
6'b00_0000:
case (opefunc)
`jump_and_link_register: control_state<=6'b101_000;
`jmp_register : control_state<=6'b101_000;
`mfhi: if (excuting_flag) control_state<=8'b00_000_010;
`mflo: if (excuting_flag) control_state<=8'b00_000_010;
default: control_state<=6'b00_0000;//for safety
endcase
endcase
`else//Priority Speed
case (opecode)
`jump: if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b100_000;
`jump_and_link_im: if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b100_000;
`beq : if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b110_000;
`bgtz : if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b110_000;
`blez : if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b110_000;
`bne : if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b110_000;
6'b000_001: if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b110_000;//Jul.11.2004 Special Branch
6'b00_0000:
case (opefunc)
`jump_and_link_register: if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b101_000;
`jmp_register : if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b101_000;
`mfhi: if (excuting_flag) begin
if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=8'b00_000_010;
end else if (takenD3) control_state<=6'b001_100;//NOP1 state
`mflo: if (excuting_flag) begin
if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=8'b00_000_010;
end else if (takenD3) control_state<=6'b001_100;//NOP1 state
default: if (takenD3) control_state<=6'b001_100;//NOP1 state
else control_state<=6'b00_0000;//for safety
endcase
default : if (takenD3) control_state<=6'b001_100;//NOP1 state
endcase
`endif
6'b???_010: case (control_state[7:6])
2'b00: control_state<=8'b01_000_010;
2'b01: if (!pause_out) control_state<=8'b11_000_010;//mul/div
2'b11: control_state<=8'b10_000_010;
2'b10: control_state<=8'b00_000_110;//NOP
default: control_state<=8'h00;
endcase
6'b???_110: control_state<=8'h01;//Jul.12.2004 PCC=save_pc;
6'b???_001: control_state<=8'h00; //Jul.12.2004 MUL IDLE avoid interrupt
default: control_state<=8'h00;//for safety
endcase
end
end
assign clear_int=control_state[2:0]==3'b101;//Jul.12.2004 interrupt_nop_state
always @(posedge clock) begin
if (sync_reset) nop_bit<=1'b0;
else if (6'b000_100==control_state[5:0] && !takenD3) nop_bit<=1'b0;//Not taken
else nop_bit<=control_state[2];
end
assign NOP_Signal=nop_bit | control_state[1];//Jul.7.2004 int_bit mul_bit
ram_module_altera
`ifdef RAM4K
ram(.clock(clock),.sync_reset(sync_reset),.IR(IR),.MOUT(MOUT),
.Paddr(PC[11:0]),.Daddr(DAddress[11:0]),.wren(MWriteD2),
.datain(memory_indata),.access_mode(M_access_modeD2),
.M_signed(M_signD2),.uread_port(uread_port),.write_busy(write_busy));
`endif
`ifdef RAM16K
ram(.clock(clock),.sync_reset(sync_reset),.IR(IR),.MOUT(MOUT),
.Paddr(PC[13:0]),.Daddr(DAddress[13:0]),.wren(MWriteD2),
.datain(memory_indata),.access_mode(M_access_modeD2),
.M_signed(M_signD2),.uread_port(uread_port),.write_busy(write_busy));
`endif
`ifdef RAM32K
ram(.clock(clock),.sync_reset(sync_reset),.IR(IR),.MOUT(MOUT),
.Paddr(PC[14:0]),.Daddr(DAddress[14:0]),.wren(MWriteD2),
.datain(memory_indata),.access_mode(M_access_modeD2),
.M_signed(M_signD2),.uread_port(uread_port),.write_busy(write_busy));
`endif
endmodule
|
RAM Module
AlteraとXilinxで場合分けしています。Xilinxは、coregen出力です。
//Jun.29.2004 w0,w1,w2,w3 bug fix
//Jun.30.2004 endian bug fix
//Jul.1.2004 endian bug fix
//Apr.2.2005 Change Port Address
`include "define.h"
`define COMB_MOUT
`define COMB_MOUT_IR
`define NO_SIGNED_MOUT
module ram_module_altera(clock,sync_reset,IR,MOUT,Paddr,Daddr,wren,datain,access_mode,M_signed,
uread_port,write_busy);
input clock,sync_reset;
input wren;
input [31:0] datain;
input M_signed;
input [7:0] uread_port;
input write_busy;//Apr.2.2005
`ifdef RAM32K
input [14:0] Paddr,Daddr;//4KB address
reg [14:0] DaddrD;
`endif
`ifdef RAM16K
input [13:0] Paddr,Daddr;//4KB address
reg [13:0] DaddrD;
`endif
`ifdef RAM4K
input [11:0] Paddr,Daddr;//4KB address
reg [11:0] DaddrD;
`endif
output [31:0] IR;//Instrcuntion Register
output [31:0] MOUT;//data out
input [1:0] access_mode;
reg [31:0] IR;
reg [31:0] MOUT;
reg [1:0] access_modeD;
wire [7:0] a0,a1,a2,a3;
wire [7:0] b0,b1,b2,b3;
wire [7:0] dport0,dport1,dport2,dport3;
wire w0,w1,w2,w3;
wire uread_port_access=`UART_PORT_ADDRESS==Daddr;
reg uread_access_reg;
assign dport0=datain[7:0] ;
assign dport1=access_mode !=`BYTE_ACCESS ? datain[15:8] : datain[7:0];
assign dport2=access_mode==`LONG_ACCESS ? datain[23:16] : datain[7:0];
assign dport3=access_mode==`LONG_ACCESS ? datain[31:24] :
access_mode==`WORD_ACCESS ? datain[15:8] : datain[7:0];
`ifdef RAM32K
ram8192x8_3 ram0(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[14:2]),
.data_b(dport0),.address_b(Daddr[14:2]),.wren_b(w0),.clock(clock),
.q_a(a0),.q_b(b0));
ram8192x8_2 ram1(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[14:2]),
.data_b(dport1),.address_b(Daddr[14:2]),.wren_b(w1),.clock(clock),
.q_a(a1),.q_b(b1));
ram8192x8_1 ram2(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[14:2]),
.data_b(dport2),.address_b(Daddr[14:2]),.wren_b(w2),.clock(clock),
.q_a(a2),.q_b(b2));
ram8192x8_0 ram3(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[14:2]),
.data_b(dport3),.address_b(Daddr[14:2]),.wren_b(w3),.clock(clock),
.q_a(a3),.q_b(b3));
`endif
`ifdef RAM16K
`ifdef ALTERA
ram4096x8_3 ram0(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[13:2]),
.data_b(dport0),.address_b(Daddr[13:2]),.wren_b(w0),.clock(clock),
.q_a(a0),.q_b(b0));
ram4096x8_2 ram1(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[13:2]),
.data_b(dport1),.address_b(Daddr[13:2]),.wren_b(w1),.clock(clock),
.q_a(a1),.q_b(b1));
ram4092x8_1 ram2(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[13:2]),
.data_b(dport2),.address_b(Daddr[13:2]),.wren_b(w2),.clock(clock),
.q_a(a2),.q_b(b2));
ram4092x8_0 ram3(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[13:2]),
.data_b(dport3),.address_b(Daddr[13:2]),.wren_b(w3),.clock(clock),
.q_a(a3),.q_b(b3));
`else
ram1k3 ram0(.addra(Paddr[13:2]),
.dinb(dport0),.addrb(Daddr[13:2]),.web(w0),.clka(clock),.clkb(clock),
.douta(a0),.doutb(b0));
ram1k2 ram1(.addra(Paddr[13:2]),
.dinb(dport1),.addrb(Daddr[13:2]),.web(w1),.clka(clock),.clkb(clock),
.douta(a1),.doutb(b1));
ram1k1 ram2(.addra(Paddr[13:2]),
.dinb(dport2),.addrb(Daddr[13:2]),.web(w2),.clka(clock),.clkb(clock),
.douta(a2),.doutb(b2));
ram1k0 ram3(.addra(Paddr[13:2]),
.dinb(dport3),.addrb(Daddr[13:2]),.web(w3),.clka(clock),.clkb(clock),
.douta(a3),.doutb(b3));
`endif
`endif
`ifdef RAM4K
ram_1k_3 ram0(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[11:2]),
.data_b(dport0),.address_b(Daddr[11:2]),.wren_b(w0),.clock(clock),
.q_a(a0),.q_b(b0));
ram_1k_2 ram1(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[11:2]),
.data_b(dport1),.address_b(Daddr[11:2]),.wren_b(w1),.clock(clock),
.q_a(a1),.q_b(b1));
ram_1k_1 ram2(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[11:2]),
.data_b(dport2),.address_b(Daddr[11:2]),.wren_b(w2),.clock(clock),
.q_a(a2),.q_b(b2));
ram_1k_0 ram3(.data_a(8'h00),.wren_a(1'b0),.address_a(Paddr[11:2]),
.data_b(dport3),.address_b(Daddr[11:2]),.wren_b(w3),.clock(clock),
.q_a(a3),.q_b(b3));
`endif
wire temp=( access_mode==`BYTE_ACCESS && Daddr[1:0]==2'b00);
assign w3= wren &&
( access_mode==`LONG_ACCESS ||
( access_mode==`WORD_ACCESS && !Daddr[1] ) ||
( access_mode==`BYTE_ACCESS && Daddr[1:0]==2'b00));
assign w2= wren &&
( access_mode==`LONG_ACCESS ||
( access_mode==`WORD_ACCESS && !Daddr[1]) ||
( Daddr[1:0]==2'b01));
assign w1= wren &&
( access_mode==`LONG_ACCESS ||
( access_mode==`WORD_ACCESS && Daddr[1]) ||
( Daddr[1:0]==2'b10));
assign w0= wren &&
( access_mode==`LONG_ACCESS ||
( access_mode==`WORD_ACCESS && Daddr[1]) ||
( Daddr[1:0]==2'b11));
//IR
`ifdef COMB_MOUT_IR
always @(*) IR={a3,a2,a1,a0};
`else
always @(posedge clock) begin
if (sync_reset) IR <=0;
else IR <={a3,a2,a1,a0};
end
`endif
always @(posedge clock) begin
if (access_modeD==`LONG_ACCESS) begin
if(uread_access_reg) begin
MOUT <={23'h00_0000,write_busy,uread_port};
end else
MOUT <={b3,b2,b1,b0};
end else if (access_modeD==`WORD_ACCESS) begin
case (DaddrD[1])
1'b0: if(M_signed) MOUT <={{16{b3[7]}},b3,b2};//Jul.1.2004
else MOUT <={16'h0000,b3,b2};
1'b1: if(M_signed) MOUT <={{16{b1[7]}},b1,b0};//Jul.1.2004
else MOUT <={16'h0000,b1,b0};
endcase
end else begin//BYTE ACCESSS
case (DaddrD[1:0])
2'b00:if(M_signed) MOUT <={{24{b3[7]}},b3};
else MOUT <={16'h0000,8'h00,b3};
2'b01:if(M_signed) MOUT <={{24{b2[7]}},b2};
else MOUT <={16'h0000,8'h00,b2};
2'b10:if(M_signed) MOUT <={{24{b1[7]}},b1};
else MOUT <={16'h0000,8'h00,b1};
2'b11:if(M_signed) MOUT <={{24{b0[7]}},b0};
else MOUT <={16'h0000,8'h00,b0};
endcase
end
end
always @(posedge clock) begin
access_modeD<=access_mode;
DaddrD<=Daddr;
uread_access_reg<=uread_port_access;//Jul.7.2004
end
endmodule
|
レジスタファイル
LUT節約の為、RAMにしました。パイプラインフォワーディングと、Criticalパスの両立でかなりQuartusとの格闘を余儀なれました。
レジスタファイルが速ければ、そんなに面倒ではないのですが、そこで3nsも、食われるともう後は、3nsしかありません。どのみち、パイプラインの為のREGは必要になるので、(ALU結果はすぐにはレジスタファイルに書かれません。メモリからの出力と同じステージ5で書きます。)REGで一旦受けます。AREGにALU結果が書かれパイプラインREGにリレーされます。ところで、パイプラインレジスタにある間は、本当のレジスタファイルには、まだ書かれていないということなので、参照されたら返してやらなければいけません。(フォワーディング)過去に書かれたレジスタアドレスが一致したら、REGにある情報をRAMに代わりとして出力してやります。こうして、RAMファイルの遅さをカバーしつつパイプしてるのです。ソフト上は勿論見えません。
この図面でのCritical Pathは、MOUTからAREGに至るパスです。HDLソースを見ても分かりませんが図面で見ると分かるものです。フォワーディングがパス遅延を悪化させていることも分かります。150MHzの世界ではMUX一段入るか入いらないかを意識する必要があり昔の泥臭い世界に近づきます。
なお、実際のHLDコーディングは、論理的にはこの図と等価ですが、Speed重視で若干変えています。

//Jun.30.2004 Mux sentibity list bug fix
//Jul.2.2004 Cleanup
//Jul.7.2004 int bug fix
//Jan.20.2005 apply @*
`include "define.h"
module Pipelined_RegFile(clock,sync_reset,
dest_addrD2,source_addr,target_addr, wren,memory_wdata,
A_Right_SELD1,A_Left_SELD1,PCD1,IMMD1,ALU_FuncD2,Shift_FuncD2,
Shift_amountD2,RRegSelD1,MOUT,RF_inputD2,alu_source,alu_target,
MWriteD2,MWriteD1,mul_alu_selD2,mul_div_funcD2,pause_out,
Shift_Amount_selD2,int_stateD1,PCCDD
);
parameter adder_type="GENERIC";
`ifdef RAM4K
input [11:0] PCD1;
`else
input [25:0] PCD1;
`endif
input [15:0] IMMD1;//Jul.6.2004
input [4:0] dest_addrD2;
input [4:0] source_addr;
input [4:0] target_addr;
input wren;
input clock;
input A_Left_SELD1;
input [3:0] ALU_FuncD2;
input [4:0] Shift_amountD2;
input [1:0] Shift_FuncD2;
input [1:0] A_Right_SELD1;
input sync_reset;
input [1:0] RRegSelD1;
output [31:0] alu_target,alu_source;
output [31:0] memory_wdata;
input [31:0] MOUT;
input [1:0] RF_inputD2;
input MWriteD2,MWriteD1;
input [1:0] mul_alu_selD2;
input [3:0] mul_div_funcD2;
output pause_out;
input Shift_Amount_selD2;
input int_stateD1;
reg [31:0] AReg,NReg,RReg,DReg;
reg [31:0] alu_left_latch,alu_right_latch;
reg [31:0] memory_wdata;
`ifdef RAM4K
input [11:0] PCCDD;
reg [11:0] PCD2;
`else
input [25:0] PCCDD;
reg [25:0] PCD2;
`endif
reg [15:0] IMMD2;//Jul.6.2004
reg [4:0] dadrD3,dadrD4,dadrD5,dadrD6;
reg [4:0] sadrD1,sadrD2;
reg [4:0] tadrD1,tadrD2;
reg WD3,WD4,WD5,WD6;
reg [1:0] A_Right_SELD2;
reg [1:0] RRegSelD2, RRegSelD3, RRegSelD4;
reg [31:0] RRegin;
reg test1D,test2D;
wire [31:0] alu_right;
reg [31:0] alu_left;
wire [31:0] source_out,target_out;
wire [31:0] alu_out,shift_out;
wire [31:0] alu_source=alu_left;
wire [31:0] alu_target=alu_right;
wire [31:0] regfile_in;
wire [31:0] test,test2;
wire test1;
reg stest1D,stest2D;
reg stest1D_dup1,stest1D_dup2,stest1D_dup3,stest1D_dup4;
reg [31:0] mul_alu_out;
reg div_mode_ff;
reg sign_ff;
reg RRegSelD4_dup1,RRegSelD4_dup2,RRegSelD4_dup3;
wire mul_div_enable,mul_div_sign,mul_div_mode;
wire [31:0] mul_div_out;
wire [31:0] c_mult;
wire [4:0] Shift_Amount;
localparam [4:0] zero_=0,
at_=1,
v0_=2,
v1_=3,
a0_=4,
a1_=5,
a2_=6,
a3_=7,
t0_=8, t1_=9,t2_=10,t3_=11,t4_=12,t5_=13,t6_=14,t7_=15,
s0_=16,s1_=17,s2_=18,s3_=19,s4_=20,s5_=21,s6_=22,s7_=23,t8_=24,t9_=25,
k0_=26,k1_=27,gp_=28,sp_=29,s8_=30,ra_=31;
always @(posedge clock) begin
dadrD3<=dest_addrD2;
dadrD4<=dadrD3;
dadrD5<=dadrD4;
dadrD6<=dadrD5;
tadrD1<=target_addr;
tadrD2<=tadrD1;
sadrD1<=source_addr;
sadrD2<=sadrD1;
if ( (mul_div_funcD2 ==4'b0000 ) ||
(mul_div_funcD2 ==4'b0001 ) ||
(mul_div_funcD2 ==4'b0010 ) ) WD3<=wren;//NOTHING,READLO/HI 以外ではライトを止める
else WD3<=1'b0;
WD4<=WD3;
WD5<=WD4;
WD6<=WD5;
A_Right_SELD2<=A_Right_SELD1;
IMMD2<=IMMD1;
if (int_stateD1) PCD2<=PCCDD;//Jul.7.2004
else PCD2<=PCD1;
RRegSelD2<=RRegSelD1;
RRegSelD3<=RRegSelD2;
RRegSelD4<=RRegSelD3;
RRegSelD4_dup1<=RRegSelD3[0];
RRegSelD4_dup2<=RRegSelD3[0];
RRegSelD4_dup3<=RRegSelD3[0];
end
//AReg
always @(posedge clock) begin
case (RF_inputD2)
`RF_ALU_sel : AReg<=alu_out;
`RF_Shifter_sel: AReg<=shift_out;
`SHIFT16_SEL: AReg<= {IMMD2[15:0],16'h00};
`RF_PC_SEL : AReg<=mul_alu_out;
endcase
end
//ARegSel
always @(*) begin//Mar.5.2005
if (! mul_alu_selD2[1] ) mul_alu_out={6'b00_0000,PCD2};
else mul_alu_out=c_mult;
end
//NReg
always @(posedge clock) NReg<=AReg;
//RReg
always @(posedge clock) begin
case (RRegSelD4_dup1)
`MOUT_SEL : RReg<=MOUT;
`NREG_SEL: RReg<=NReg;
default : RReg<=MOUT;
endcase
end
//DReg
always @(posedge clock) begin
DReg<=RReg;
end
always @(*) begin
case (RRegSelD4_dup2)
`MOUT_SEL : RRegin=MOUT;
`NREG_SEL: RRegin=NReg;
default : RRegin=MOUT;
endcase
end
//target_reg
always @(*) memory_wdata=alu_right;
mul_div MulDiv(.clock(clock),.sync_reset(sync_reset),.a(alu_left),.b(alu_right),
.mul_div_out(c_mult),.mul_div_sign(mul_div_funcD2[1]),
.mul_div_word(1'b1),.mul_div_mode(mul_div_funcD2[2]),
.stop_state(pause_out),.mul_div_enable(mul_div_funcD2[3]),.lohi(mul_div_funcD2[0]));
assign mul_div_enable= mul_div_funcD2;
always @(posedge clock) begin
if (sync_reset) div_mode_ff<=1'b0;
else if (mul_div_enable) div_mode_ff<=mul_div_mode;
end
always @(posedge clock) begin
if (sync_reset) sign_ff<=1'b0;
else if (mul_div_enable) sign_ff<=mul_div_sign;
end
assign mul_div_mode=!(IMMD2[1] ==`MUL_DIV_MUL_SEL);//div high / mul low
assign mul_div_sign=!IMMD2[0];
alu alu1(.a(alu_left),.b(alu_right),.alu_func(ALU_FuncD2),.alu_out(alu_out));
shifter sh1(.a(alu_right),.shift_out(shift_out),.shift_func(Shift_FuncD2),
.shift_amount(Shift_Amount));
assign Shift_Amount=Shift_Amount_selD2==`SHIFT_AMOUNT_REG_SEL ?
alu_left[4:0] : Shift_amountD2;
//alu left latch
always @(posedge clock) begin
begin
if (sadrD1==dadrD4 && WD4) alu_left_latch<=RRegin;
//OK
else if (sadrD1==dadrD5 && WD5) alu_left_latch<=RReg;//This must be priority encoder
else if (sadrD1==dadrD6 && WD6) alu_left_latch<=DReg;
else alu_left_latch<=source_out;
end
end
//alu right latch
always @(posedge clock) begin
begin
case (A_Right_SELD1)
`Imm_signed : alu_right_latch<={ {16{IMMD1[15]}},IMMD1[15:0]};
`Imm_unsigned : alu_right_latch<={ 16'h000,IMMD1[15:0]};
`A_RIGHT_ERT : begin
if (tadrD1==dadrD4 && WD4 ) alu_right_latch<=RRegin;
else //OK
if (tadrD1==dadrD5 && WD5 ) alu_right_latch<=RReg;
else if (tadrD1==dadrD6 && WD6) alu_right_latch<=DReg;
else alu_right_latch<=target_out;
end
`IMM_26_SEL : begin
alu_right_latch<={6'b00_0000,IMMD1};
end
default : alu_right_latch<={ {16{IMMD1[15]}},IMMD1[15:0]};
endcase
end
end
`ifdef ALTERA
ram_regfile32xx32 RFile(
.data(regfile_in),
.wraddress(dadrD5),
.rdaddress_a(target_addr),
.rdaddress_b(source_addr),
.wren(WD5),
.clock(clock),
.qa(target_out),
.qb(source_out));
`else
ram32x32_xilinx RFile (
.data(regfile_in),
.wraddress(dadrD5),
.rdaddress_a(target_addr),
.rdaddress_b(source_addr),
.wren(WD5),
.clock(clock),
.qa(target_out),
.qb(source_out));
`endif
assign regfile_in=dadrD5==5'b0_0000 ? 32'h0000_0000 :RReg;
always @* begin //
case (stest1D_dup1)
1'b1: alu_left[7:0]=AReg[7:0];
1'b0:
case(stest2D)
1'b1:
case (RRegSelD4_dup3)
`MOUT_SEL : alu_left[7:0]=MOUT[7:0];
`NREG_SEL: alu_left[7:0]=NReg[7:0];
endcase
1'b0: alu_left[7:0]=alu_left_latch[7:0];
endcase
endcase
end
always @* begin //
case (stest1D_dup2)
1'b1: alu_left[15:8]=AReg[15:8];
1'b0:
case(stest2D)
1'b1:
case (RRegSelD4_dup3)
`MOUT_SEL : alu_left[15:8]=MOUT[15:8];
`NREG_SEL: alu_left[15:8]=NReg[15:8];
endcase
1'b0: alu_left[15:8]=alu_left_latch[15:8];
endcase
endcase
end
always @* begin//
case (stest1D_dup3)
1'b1: alu_left[23:16]=AReg[23:16];
1'b0:
case(stest2D)
1'b1:
case (RRegSelD4_dup3)
`MOUT_SEL : alu_left[23:16]=MOUT[23:16];
`NREG_SEL: alu_left[23:16]=NReg[23:16];
endcase
1'b0: alu_left[23:16]=alu_left_latch[23:16];
endcase
endcase
end
always @* begin //
case (stest1D_dup4)
1'b1: alu_left[31:24]=AReg[31:24];
1'b0:
case(stest2D)
1'b1:
case (RRegSelD4_dup3)
`MOUT_SEL : alu_left[31:24]=MOUT[31:24];
`NREG_SEL: alu_left[31:24]=NReg[31:24];
endcase
1'b0: alu_left[31:24]=alu_left_latch[31:24];
endcase
endcase
end
assign alu_right=test1D ? AReg :
test2D ? RRegin : alu_right_latch;
always @(posedge clock) begin
stest1D<=(sadrD1==dest_addrD2) && wren;
stest1D_dup1<=(sadrD1==dest_addrD2) && wren;
stest1D_dup2<=(sadrD1==dest_addrD2) && wren;
stest1D_dup3<=(sadrD1==dest_addrD2) && wren;
stest1D_dup4<=(sadrD1==dest_addrD2) && wren;
end
always @(posedge clock) begin
stest2D<=(sadrD1==dadrD3) && WD3 ;
end
always @(posedge clock) begin
test1D<=tadrD1==dest_addrD2 && (wren ) && A_Right_SELD1==`A_RIGHT_ERT;
end
always @(posedge clock) begin
test2D<=tadrD1==dadrD3 && (WD3 ) && A_Right_SELD1==`A_RIGHT_ERT;
end
`ifdef Veritak
reg [30*8:1] alu_function;
reg [30*8:1] shift_function;
reg [30*8:1] AReg_Input_Sel;
always @*//Jan.20.2005 @(ALU_FuncD2,alu_left,alu_right)
case (ALU_FuncD2)
`ALU_NOTHING : $sprintf(alu_function,"non_operation");
`ALU_ADD : $sprintf(alu_function,"ADD %h,%h",alu_left,alu_right);
`ALU_SUBTRACT :$sprintf(alu_function,"SUB %h,%h,alu_left,alu_right");
`ALU_LESS_THAN_UNSIGNED :$sprintf(alu_function ,"LT_Unsigned %h,%h",alu_left,alu_right);
`ALU_LESS_THAN_SIGNED : $sprintf(alu_function,"LT_Signed %h,%h",alu_left,alu_right);
`ALU_OR : $sprintf(alu_function,"OR %h,%h",alu_left,alu_right);
`ALU_AND : $sprintf(alu_function,"XOR %h,%h,alu_left,alu_right");
`ALU_XOR : $sprintf(alu_function,"AND %h,%h",alu_left,alu_right);
`ALU_NOR : $sprintf(alu_function,"NOR %h,%h",alu_left,alu_right);
default: $sprintf(alu_function,"non_operation");
endcase
always @* begin //
case (Shift_FuncD2)
`SHIFT_LEFT : $sprintf(shift_function,"SLL %d",Shift_Amount);
`SHIFT_RIGHT_UNSIGNED : $sprintf(shift_function,"SLR %d",Shift_Amount);
`SHIFT_RIGHT_SIGNED : $sprintf(shift_function,"SAR %d",Shift_Amount);
default: $sprintf(shift_function,"non_operation");
endcase
end
always @* begin //
case (RF_inputD2)
`RF_ALU_sel : $sprintf(AReg_Input_Sel,"ALU");
`RF_Shifter_sel: $sprintf(AReg_Input_Sel,"Shifter");
`SHIFT16_SEL: $sprintf(AReg_Input_Sel,"IMM16<<16");
`RF_PC_SEL : $sprintf(AReg_Input_Sel,"PC/MulOutSEL");
endcase
end
`endif
endmodule
|
全体接続
開発時は、メモリポートを外に出します。
FPGAに焼くときは、外しています。
//Jun.30.2004 blez bgtz bug fix
//Jul.7.2004 int bug fix
//Jul.11.2004 bgezQ,bltzQ
//Apr.2.2005 Change Port Address, change uart interface port
//Apr.3.2005 bgtz bug fix
`include "define.h"
`ifdef RTL_SIMULATION
module yacc(clock,Async_Reset,MemoryWData,MWriteFF,data_port_address,
RXD,TXD);
input clock;
input Async_Reset;
output [31:0] MemoryWData;
output [15:0] data_port_address;
output MWriteFF;
input RXD;
output TXD;
`else
module yacc(clock,Async_Reset, RXD,TXD);
input clock;
input Async_Reset;
input RXD;
output TXD;
`endif
wire [31:0] MOUT,IRD1;
wire RegWriteD2;
wire [1:0] A_Right_SELD1;
wire [1:0] RF_inputD2;
wire M_signD1,M_signD2;
wire [1:0] M_access_modeD1,M_access_modeD2;
wire [3:0] ALU_FuncD2;
wire [1:0] Shift_FuncD2;
wire [25:0] IMMD2,IMMD1;
wire [4:0] source_addrD2,target_addrD2;
wire [4:0] source_addrD1,target_addrD1,Shift_amountD2;
wire [4:0] RF_input_addr;
wire [2:0] PC_commandD1;
wire [7:0] uread_port;
wire takenD2;//
`ifdef RAM4K
wire [11:0] DAddress;//
wire [11:0] PC;
reg [11:0] int_address;//interim
reg [11:0] PCD1,PCD2;
reg [15:0] IRD2;
reg [11:0] DAddrD;
wire [11:0] PCCDD;
`else
wire [25:0] PC;
wire [25:0] DAddress;//
reg [25:0] int_address;//interim
reg [25:0] PCD1,PCD2;
reg [25:0] IRD2;
reg [25:0] DAddrD;
wire [25:0] PCCDD;
`endif
wire [31:0] memory_indata;//
wire memory_sign;
wire [1:0] memory_access_mode;
wire [31:0] ea_reg_out;
wire [31:0] regfile_indata,regfile_indata_temp;//
wire reg_compare;
wire beqQ,bneQ,blezQ,bgtzQ;
wire [25:0] IMM;
wire clear_int;
wire jumpQ,branchQQ;
wire [31:0] memory_wdata;
wire [31:0] alu_source,alu_target;
wire [1:0] RRegSelD1;
wire A_Left_SELD1;
wire [1:0] mul_alu_selD2;
wire [3:0] mul_div_funcD2;
//registers
reg sync_reset;
wire [31:0] forward_source_reg,forward_target_reg;
// reg [31:0] MOUT_ff;
reg takenD3;
reg int_req;
reg beqQQ,bneQQ,blezQQ,bgtzQQ;
reg bgezQQ,bltzQQ;
reg MWriteFF;
wire MWriteD2,MWriteD1;
reg [31:0] MemoryWData;
wire NOP_Signal;
wire [7:0] control_state;
wire [15:0] data_port_address=DAddrD;
wire [3:0] mult_func;
wire pause_out;
wire Shift_Amount_selD2;
wire source_zero;//Jun.30.2004
wire int_req_uport;
wire uart_write_req;
wire uart_write_done,uart_write_busy;
wire int_stateD1;
wire bgezQ,bltzQ;
decoder d1(.clock(clock),.sync_reset(sync_reset),.MWriteD1(MWriteD1),
.RegWriteD2(RegWriteD2),.A_Right_SELD1(A_Right_SELD1),.RF_inputD2(RF_inputD2),
.RF_input_addr(RF_input_addr),.M_signD1( M_signD1),.M_signD2(M_signD2),
.M_access_modeD1(M_access_modeD1),.M_access_modeD2(M_access_modeD2),
.ALU_FuncD2(ALU_FuncD2),.Shift_FuncD2(Shift_FuncD2),
.source_addrD1(source_addrD1),.target_addrD1(target_addrD1),.IMMD2(IMMD2),
.source_addrD2(source_addrD2),.target_addrD2(target_addrD2),
.Shift_amountD2(Shift_amountD2),.PC_commandD1(PC_commandD1),.IMMD1(IMMD1),.IRD1(IRD1),.takenD3(takenD3),.takenD2(takenD2),.beqQ(beqQ),.bneQ(bneQ),.blezQ(blezQ),.bgtzQ(bgtzQ),
.DAddress(DAddress),.PC(PC),.memory_indata(memory_indata),.MOUT(MOUT),.IMM(IMM),
.branchQQ(branchQQ),.jumpQ(jumpQ),.int_req(int_req),.clear_int(clear_int),
.int_address(int_address),.A_Left_SELD1(A_Left_SELD1),.RRegSelD1(RRegSelD1),
.MWriteD2(MWriteD2),.NOP_Signal(NOP_Signal),.mul_alu_selD2(mul_alu_selD2),
.mul_div_funcD2(mul_div_funcD2),.pause_out(pause_out),.control_state(control_state),
.Shift_Amount_selD2(Shift_Amount_selD2),
.uread_port(uread_port),.int_stateD1(int_stateD1),.bgezQ(bgezQ),.bltzQ(bltzQ),.write_busy(uart_write_busy));
pc_module pc1(.clock(clock),.sync_reset(sync_reset),.pc_commandD1(PC_commandD1),.PCC(PC),
.imm(IMM),.ea_reg_source(alu_source),.takenD2(takenD2),.takenD3(takenD3),
.branchQQ(branchQQ),.jumpQ(jumpQ),.NOP_Signal(NOP_Signal),
.control_state(control_state),.IMMD1(IMMD1),.PCCDD(PCCDD));
Pipelined_RegFile pipe(.clock(clock),.sync_reset(sync_reset),
.dest_addrD2(RF_input_addr),.source_addr(IMM[25:21]),.target_addr(IMM[20:16]),
.wren(RegWriteD2),.memory_wdata(memory_wdata),
.A_Right_SELD1(A_Right_SELD1),.A_Left_SELD1(A_Left_SELD1),.PCD1(PCD1),
.IMMD1(IMMD1[15:0]),.ALU_FuncD2(ALU_FuncD2),.Shift_FuncD2(Shift_FuncD2),
.Shift_amountD2(Shift_amountD2),.RRegSelD1(RRegSelD1),.MOUT(MOUT),
.RF_inputD2(RF_inputD2),.alu_source(alu_source),.alu_target(alu_target),
.MWriteD2(MWriteD2),.MWriteD1(MWriteD1),.mul_alu_selD2(mul_alu_selD2),
.mul_div_funcD2(mul_div_funcD2),.pause_out(pause_out),
.Shift_Amount_selD2(Shift_Amount_selD2),.int_stateD1(int_stateD1),.PCCDD(PCCDD));
//sync_reset
always @(posedge clock , negedge Async_Reset) begin
if (!Async_Reset) sync_reset <=1'b1;
else sync_reset <=!Async_Reset;
end
//PCD1,PCD2
always @(posedge clock) begin
PCD1 <=PC+4;
end
always @(posedge clock) begin
PCD2 <=PCD1;
end
//
always @(posedge clock) begin
IRD2 <=IRD1;
end
always @(posedge clock) begin
if (sync_reset) MWriteFF<=1'b0;
else MWriteFF <=MWriteD2;
end
assign memory_access_mode=M_access_modeD1;
assign memory_sign=M_signD1;
assign DAddress=alu_source[25:0]+{ {6{IRD2[15]}},IRD2[15:0]};
//
always @(posedge clock) begin
DAddrD <=DAddress;
end
//
always @(posedge clock) begin
MemoryWData <=memory_wdata;
end
assign memory_indata=memory_wdata;
assign reg_compare=( alu_source==alu_target);
always @(posedge clock) begin
if (!NOP_Signal) begin//Jun.29.2004
beqQQ<=beqQ;
bneQQ<=bneQ;
bgtzQQ<=bgtzQ;
blezQQ<=blezQ;
bgezQQ<=bgezQ;//Jul.11.2004
bltzQQ<=bltzQ;//Jul.11.2004
end
end
always @( beqQQ ,bneQQ,bgtzQQ,blezQQ,bgezQQ,bltzQQ,reg_compare,alu_source) begin//Jul.11.2004
takenD3= ( beqQQ && reg_compare) ||
( bneQQ && !reg_compare) ||
( bgtzQQ && !alu_source[31] && !reg_compare) || //Apr.3.2005 bug fix $s >0 Jun.30.2004
( blezQQ && (alu_source[31] || reg_compare )) ||
( bgezQQ && (!alu_source[31] || reg_compare )) || //Jul.11.2004
( bltzQQ && (alu_source[31] )); //Jul.11.2004//$s <0=Jun.30.2004
end
uart_read uread( .sync_reset(sync_reset),.clk(clock), .rxd(RXD),
.buffer_reg(uread_port),.int_req(int_req_uport));
uart_write uwite( .sync_reset(sync_reset), .clk(clock), .txd(TXD),.data_in(MemoryWData[7:0]) ,
.write_request(uart_write_req),.write_done(uart_write_done),.write_busy(uart_write_busy));
`ifdef RAM4K
assign uart_write_req= DAddrD[11:0]==12'hfff && MWriteFF;//`UART_WRITE_PORT_ADDRESS ;
always @ (posedge clock) begin
if (sync_reset) int_address<=0;
else if (DAddrD[11:0]==12'h0ff8 & MWriteFF) int_address<=MemoryWData;
end
`endif
`ifdef RAM16K
assign uart_write_req= DAddrD==`UART_PORT_ADDRESS && MWriteFF ;//`UART_WRITE_PORT_ADDRESS ;
always @ (posedge clock) begin
if (sync_reset) int_address<=0;
else if (DAddrD==`INTERUPPT_ADDRESS & MWriteFF) int_address<=MemoryWData;
end
`endif
`ifdef RAM32K
assign uart_write_req= DAddrD[15:0]==16'h07fff && MWriteFF ;//`UART_WRITE_PORT_ADDRESS ;
always @ (posedge clock) begin
if (sync_reset) int_address<=0;
else if (DAddrD==16'h7ff8 & MWriteFF) int_address<=MemoryWData;
end
`endif
//state machine
//latch with one shot pulse
//clear by clear_int
always @(posedge clock) begin
if (sync_reset) int_req <=1'b0;
else if (clear_int) int_req <=1'b0;// assume one shot(1clk) pulse
else if ( int_req_uport) int_req<=1'b1;//
end
endmodule
|
UART WRITE( TXD送信)
512バイトのキュー(FIFO)を持ちます。最初、メガファンクションを使った記述はしていませんでしたが、LUT削減のため、使用しました。
`include "define.h"
//Apr.5.2005 Tak.Sugawara
//Jul.14.2004
module uart_write( sync_reset, clk, txd, data_in , write_request,write_done,write_busy);
input sync_reset,clk;
input [7:0] data_in;
input write_request;
output txd,write_done;
output write_busy;
wire queue_full;
wire queing, read_request;
wire [7:0] queue_data;
reg read_request_ff;
//________|--|___write_request (upper module : its period should be 1clock time.)
//__________________________|-|______write_done (Responds by this module posedge interrupt)
//With 512Bytes FIFO.
//No error handling is supported.
reg [8:0] clk_ctr;
reg [2:0] bit_ctr;
reg [2:0] ua_state;
reg [7:0] tx_sr;
reg write_done_n;
reg txd;
wire clk_ctr_equ15, clk_ctr_equ31, bit_ctr_equ7,
clk_ctr_enable_state, bit_ctr_enable_state ;
wire tx_state;
wire empty;
assign write_busy=queue_full;//Apr.2.2005
always @ (posedge clk) begin
if (sync_reset) read_request_ff<=1'b0;
else read_request_ff<=read_request;
end
assign queing= !empty;
assign read_request = queing && ua_state==3'b000;//Jul.14.2004
assign write_done=ua_state==3'b101;
`ifdef ALTERA
fifo512_cyclone fifo(
.data(data_in),
.wrreq(write_request),
.rdreq(read_request),
.clock(clk),
.q(queue_data),
.full(queue_full),
.empty(empty));
`else//XILINX coregen
fifo fifo(
.clk(clk),
.sinit(sync_reset),
.din(data_in),
.wr_en(write_request),
.rd_en(read_request),
.dout(queue_data),
.full(queue_full),
.empty(empty));
`endif
// 7bit counter
always @(posedge clk ) begin
if (sync_reset)
clk_ctr <= 0;
else if (clk_ctr_enable_state && clk_ctr_equ31) clk_ctr<=0;
else if (clk_ctr_enable_state) clk_ctr <= clk_ctr + 1;
else clk_ctr <= 0;
end
assign clk_ctr_equ15 = clk_ctr==`COUNTER_VALUE1;
assign clk_ctr_equ31 = clk_ctr==`COUNTER_VALUE2;
// 3bit counter
always @(posedge clk) begin
if (sync_reset)
bit_ctr <= 0;
else if (bit_ctr_enable_state) begin
if (clk_ctr_equ15)
bit_ctr <= bit_ctr + 1;
end
else
bit_ctr <= 0;
end
assign bit_ctr_equ7 = (bit_ctr==7);
assign clk_ctr_enable_state = bit_ctr_enable_state || ua_state==3'b001 || ua_state==3'b100 ;
assign bit_ctr_enable_state = ua_state==3'b010 || ua_state==3'b011;
always @(posedge clk ) begin
if (sync_reset) ua_state <= 3'b000;
else begin
case (ua_state)
3'b000: if (queing) ua_state <= 3'b001; //wait write_request
3'b001: if ( clk_ctr_equ15) ua_state <= 3'b010; // write start bit
3'b010: if (bit_ctr_equ7 & clk_ctr_equ15) ua_state <= 3'b011; // start bit, bit0-7 data send
3'b011: if (clk_ctr_equ15) ua_state <= 3'b100; // bit7 data send
3'b100: if (clk_ctr_equ15) ua_state <= 3'b101; // stop bit // stop bit send
3'b101: ua_state <= 3'h0; // TAK // byte read cycle end
default: ua_state <= 3'h0;
endcase
end
end
// tx shift reg.
always @(posedge clk ) begin
if (sync_reset) tx_sr<=0;
else if (read_request_ff) tx_sr <= queue_data[7:0]; //data_in[7:0]; // load
else if (tx_state ) tx_sr <= {1'b0, tx_sr[7:1]};
end
assign tx_state=( ua_state==3'h2 || ua_state==3'h3) && clk_ctr_equ15;
// tx
always @(posedge clk ) begin
if (sync_reset) txd <=1'b1;
else if (sync_reset) txd<=1'b1;
else if (ua_state==3'h0) txd<=1'b1;
else if (ua_state==3'h1 && clk_ctr_equ15) txd<=1'b0; // start bit
else if (ua_state==3'h2 && clk_ctr_equ15) txd<=tx_sr[0];
else if (ua_state==3'h3 && clk_ctr_equ15) txd<=1'b1; // stop bit
end
endmodule
|